Pupillary System & Task-Evoked Pupillary Responses

12627 S/E: Neurocognitive Psychology
Lecturer: Prof. Dr. Jacobs
Speakers: Nicole Cossa
 Shirley Atherley

Content Pupillary System

1. the eye
 1.1 anatomy of the eye
 1.2. function of the eye
2. pupillary system
 2.1 anatomy and physiology of the pupillary system
 2.2 functions of the pupil
 2.3. reflexes
3. measuring of the pupillary responses
 3.1 photographic pupillometry
 3.2 electronic video – based pupillometry
“It is said that the eye is a window to the soul, however, the pupil provides psychophysiology with a window to the brain“

Beatty, J. (1986). chapter three: the pupillary system, 43

1. the eye
1.1 anatomy of the eye

- a spherical structure
- 3 tissues: cornea, choroidea, retina

Illustration 1: anatomy of the eye
reference: Dr. Goldmann, D.R. (2002), Medizin & Gesundheit, 567

1.2 function of the eye

- transformation of pictures into electrical signals
- cerebral cortex: production of three-dimensional impression
- combination of information of other senses

Illustration 2: function of the eye
reference: Dr. Goldmann, D.R. (2002), Medizin & Gesundheit, 568
2. pupillary system

2.1 anatomy and physiology of pupillary system

- regulation of pupillary diameter by 2 groups of smooth muscles:
 - the dilator pupillae
 - the sphincter pupillae

reference: Dr. Goldmann, D.R. (2002), Medizin & Gesundheit, S. 568
2.2 functions of the pupil

- pupillary diameter -> environmental illumination
- changes of the pupillary diameter -> control of the depth of field of the eye
- reducing pupillary diameter -> aberrations of the eye's optical system

2.3 reflexes

- **the light - reflex:**
 principal determinant of pupillary diameter

- **the near - reflex:**
 - link with the activity of the ocular - motor system
 - constriction -> increasing the depth of the field of the visual system

- **the psychosensory reflex:**
 dilation -> mental processes
3. measuring of pupillary responses

3.1 photographic pupillometry

- the older, simpler and less expensive one

- beginning:
 - photographing the pupil of one eye
 - using a macro - focusing motion picture camera

- 16 mm - film or 35mm - film

- also infrared film

- the developed film -> projecting the image of the eye onto a large surface
 - measuring the pupil -> ordinary yardstick
3.2 electronic video - based pupillometry

- high-resolution linear infrared video camera
- series of hardware pattern recognition circuits -> extraction of boundary separating iris and pupil
- pupil area or vertical pupillary diameter -> computed electronically
- acquisition of pupillometric data, on-line artifact detection and response averaging

Reference

- Beatty, J. (1986), Chapter three: Pupillary System, 43 – 50
- Dr. Goldmann, D.R. (2002), Medizin & Gesundheit, Starnberg: Dorling Kindersley Verlag GmbH, 566 - 570
Task-Evokes Pupillary Responses and Processing Load
A Review of experimental data

Content
1. Introduction
2. Kahneman’s 3 criteria
 2.1 Within-Task Variations in Processing Load
 2.2 Between-Task Variations in Processing Load
 2.3 Between-Individual Variations in Processing Load
3. Conclusion

1. Task-Evoked pupillary response as a tool for measuring human cognitive processes - Possible?

- Pupillary dilations that accompany cognitive processes occur at short latencies following the onset of processing and subside quickly once processing is terminated
- The magnitude of pupillary dilation appears to be a function of processing load required to perform a cognitive task
- These facts led Kahneman (1973) to rely on the task-evoked pupillary response as the primary measure of processing load
2. Kahneman's 3 criteria for any physiological indicator of processing load

1. It should be sensitive to **within-task variations** in task demands, produced by changes in task parameters
2. It should reflect **between-task differences** in processing load elicited by qualitatively different cognitive operations
3. It should capture **between-individual differences** in processing load

2.1 Within-Task Variations in processing load, 1st criteria

- Task-Evoked pupillary responses have been obtained for a wide variety of cognitive processes like
 - sensory detection
 - memory
 - language processing
 - attention
 - complex reasoning
2.1.1 Within-Task Variations in processing load
Task-Evoked Pupillary Responses in Short-term memory tasks

- Kohneman and Beatty (1966):
 - Strings of 3 – 7 digits were aurally presented at the rate of 1 per second
 - After a 2-sec. pause, repeat the digit string at the same rate
- Pupillary diameter increases with presentation of each digit
- During report, pupillary diameter decreases with each digit spoken and reaching baseline levels after final digit

2.1.2 Within-Task Variations in processing load
Task-Evoked Pupillary Responses in Language processing tasks

- Study of processing meaningful sentences of different complexity (Ahern, 1978)
 - Presented Sentences: „A follows B“ or „B precedes A“
 - Following exemplar „AB“ or „BA“
- Task: was to determine whether the sentence correctly described the exemplar
- Peak during the decision interval
2.1.3 Within-Task Variations in processing load

Task-evoked pupillary responses in Mental Arithmetic Tasks as indicator for Reasoning

- Hess an Polt (1964) measured pupillary diameter as 5 subjects solved 4 multiplication problems, ranging in difficulty from 7x8 to 16x23
- for each of the problems the pupillary diameter increased from the moment of problem presentation until the point of solution
- percentage of dilation was perfectly ordered by difficulty of the problem

2.1.4 Within-Task Variations in processing load

Task-evoked pupillary responses in Perceptual Detection Tasks

- Uniform visual field on which brief increments in luminance could be imposed as pupillary diameter was measured
- clear pupillary dilation of approximately .10 mm was observed, if a presented target was detected
2.2 Between-Task Variations in Processing Load; the 2nd

Task-evoked pupillary responses as an index of between-subject variations of processing load imposed (Ahern, Beatty; 1979)

2 groups (low an high intelligence) of university undergraduates, differed in by SAT measured intelligence

4 tasks

- the more difficult tasks elicited larger pupillary responses
5. Conclusion

- Task-evoked pupillary response as a reliable measure method...
- In each of the experiments and checked criterias described, there appears to be an orderly relationship between the processing demands imposed by a cognitive task and the amplitude of the task-evoked pupillary response.
 - The proof, at least for Beatty, is given

6. Reference