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The recently published American Academy of Sleep Medicine 
(AASM) manual for the scoring of sleep1 defines rules for 

sleep stages and associated events, based on evidence reviews 
and the consensus of experts.2 Methods of digital recording and 
analysis were reviewed in an accompanying paper3 but did not 
receive a primacy for sleep analysis. Considering the enormous 
changes that have taken place with the spread of digital recording 
systems and the development of various algorithms to quantify 
sleep data, it is surprising to see that visual sleep staging still has 
the status of the gold standard for sleep analysis. In the following 
sections of this paper, the different limitations of sleep scoring 
by hand, as well as alternative strategies of computerized sleep 
analysis, will be discussed. Although many of these points have 
been debated earlier,4-6 the implementation of the new AASM 
scoring manual deserves a rethinking of the process of scoring 
sleep stages. To better understand the pros and cons of sleep stag-
ing, one has to look from where it comes and how it developed as 
the primary technique of sleep analysis.

Sleep Staging, Some HiStorical remarkS

Only a few years after the invention of the electroencepha-
logram (EEG), it was Alfred L. Loomis who started a research 

project to study sleep in humans with the new EEG technol-
ogy in his private laboratory at Tuxedo Park, New York. The 
personal and sociologic background of this research has been 
investigated in great detail in recent years.7-9 Equipped with 
state-of-the-art amplifier technique and ink-writing recording 
systems, Loomis and coworkers were the first who performed 
whole-night EEG recordings of sleeping subjects and pioneered 
the essential electrophysiologic patterns of sleep in a series of 
ingenious papers. First they observed alpha activation after 
acoustic stimulation in sleep,10 which contrasted with alpha 
blocking after stimulation in the wake state. Next, they de-
scribed most of the essential EEG waveforms of sleep, namely 
sleep spindles, sawtooth waves, and random waves, later called 
K complexes or slow waves.11 When examining long-term re-
cordings of sleep EEG, they recognized that there were both 
slow developments and abrupt changes in the EEG pattern of 
sleep, and they concluded (p136) “...that the old idea of a con-
tinuous curve of sleep needs modification”.12 With a stroke of 
genius, they integrated the different EEG features of sleep into 
a set of 5 levels or states of sleep (A to E), spanning the con-
tinuum from wakefulness to deep sleep.12,13 The time course of 
sleep with the transitions between states was depicted graphi-
cally as a 2-dimensional plot with time on the abscissa and the 
sleep stages on the ordinate. Although they clearly defined the 
time axis in physical terms, Loomis’ group made efforts to vali-
date the order of the 5 sleep states against measures of depth of 
sleep. They showed that the degree of arousability decreased 
from A to E, whereas movements were most prominent in states 
A and B, and a change in state was frequently connected with a 
body movement.12,13

The newly developed scoring system had to be reworked 
when REM sleep was recognized as a different state of sleep 
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2007, to integrate accumulated knowledge from sleep science, adding 
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in 1953. In a first step, Dement and Kleitman14 used a revised 
scoring system to differentiate EEG patterns of sleep and dis-
tinguished among 4 EEG stages, which they called stages 1 to 
4. When they could show that the incidence of the newly de-
tected REMs in sleep coincided with stage 1, only sparing stage 
1 at the onset of sleep, the new classification of EEG states of 
sleep was quickly adopted by others. The new system became 
standard for staging human sleep when the scoring rules were 
standardized by a committee of experts a few years later.15

tHe DimenSionality oF Sleep

As long as sleep was conceived as a unitary process, al-
though separated into different levels or states, the order of 
states was assumed to be linear, proceeding from wakefulness 
to deep sleep.12 A new situation arose when REM sleep was 
recognized as a different state of sleep with specific features 
and regulatory mechanisms.16,17 Although the sequence of non-
REM (NREM) sleep stages 1 to 4 (R&K classification15) or N1 
to N3 (AASM classification1) fulfills the criteria of an ordinal 
scale, with a linear order of stages but variable intervals, the ad-
dition of REM sleep resulted in a more complex metric of sleep 
states. An adverse consequence for sleep analysis was that the 
new scoring system has only nominal scale quality, with a non-
linear order of stages and variable intervals. For this reason, it 
is only by convention whether REM sleep is represented either 
on the top14 or on the bottom18 of the sleep profile. The low met-
ric of sleep stages limits mathematic operations to addition or 
subtraction, and, as a consequence, the most common statistical 
descriptors of sleep stages are simple measures, such as laten-
cies and amounts (minutes or percentages) of stages, or derived 
measures, such as sleep efficiency. For this reason, more ambi-
tious approaches to model sleep in a mathematic way bypass 
sleep staging and make use of variables with higher scale qual-
ity, such as power of EEG frequency bands.19 However, this 
does not exclude the possibility of also modeling sleep on the 
basis of sleep stages, as Feinberg20 and Gaillard21 showed in 
early sleep-modeling studies. The latter author foresaw (p89): 
“Leaving aside byzantine discussions about what sleep stages 
are and are not, future research may point to another kind of 
digitalization of sleep. In that case, the same methodology will 
be applicable and will make it possible to transform the all-or-
nothing variables into continuous functions of sleep.”21 Here, 
again, the concept of sleep as either a continuous or discon-
tinuous function appears, which pulls itself like a red thread 
through electrophysiologic sleep research.

alternatives for Sleep analysis

Although the conventional manner is to represent the time 
course of sleep as a sequence of states or stages along the time 
axis, alternatives have been conceived. Steriade and McCarley22 

used a 3-dimensional indicator space to illustrate the definition 
of waking, EEG-synchronized sleep, and REM sleep. This con-
cept was developed further by Hobson et al,23 who suggested 
a 3-dimensional state-space AIM model to represent the states 
wake, NREM sleep, and REM sleep along the 3 axes: activa-
tion (A; from high to low), input source (I; from internal to 
external), and a modulation (M; from aminergic to cholinergic). 

The trajectory that connects the 3 states in the state space was 
modeled earlier by Massaquoi and McCarley.24

Another alternative to represent the changes of cerebral activ-
ity during sleep was suggested by Koella,25 who developed the 
concept of local vigilance to describe the actual readiness of in-
dividualized systems, such as neural, motor, vegetative, or other 
systems. In sleep, the “vigilance profile, i.e., the level of a variety 
of local vigilances, changes fundamentally again with the transi-
tion from NREM to REM sleep.” (p1429) 25 Although the sub-
ject is in deep NREM sleep, the local vigilance of electrocortical 
systems is low and the local vigilance of motor systems is high. 
As a consequence, NREM parasomnias are typically associated 
with motor acts but without conscious awareness. The reverse is 
true for REM sleep, with a high vigilance of electrocortical sys-
tems and low vigilance of the motor systems. Koella concluded 
(p1433): “These pre-programmed variations in local vigilance of 
the many behavioural systems are so obvious that one may seri-
ously consider using the vigilance profile as the foundation for a 
badly needed, new functional principle of sleep staging.”25

tHe SubDiviSion oF nrem Sleep

Another critical point in sleep staging is the definition and 
demarcation of the NREM sleep stages. Although human visual 
analyzers are extremely skilled in pattern recognition and in 
the flexible adaptation of a set of rules that define sleep stages, 
they are poor in handling slow changes, as the changes typi-
cally occur in the background EEG, e.g., changes in the num-
ber, duration, and amplitude of slow waves of NREM sleep. 
Such changes in the EEG can only be transformed into scoring 
rules by the application of quite arbitrary threshold criteria, as 
they were used to differentiate between sleep stages 3 and 4 
in the Rechtschaffen and Kales manual.15 For just this reason, 
sleep stages 3 and 4 were combined into a single stage (N3) in 
the new AASM scoring manual.1 The decision for only 1 sleep 
stage, characterized by EEG slow waves, greatly reduces the 
tedious and time-consuming work load for the human scorer to 
count the occurrence and amplitudes of delta waves, whereas, 
at the same time, the cost of the decision is an increase in intra-
state variability. Multidimensional statistical analysis suggests 
that sleep stages are inhomogeneous and can be subdivided into 
smaller, more homogeneous units.26 The fact that sleep stages 
are nonhomogeneous units is also known from experimental 
studies. Brandenberger et al,27 for example, who analyzed au-
tonomic and hormone data during sleep, presented evidence for 
2 substates of stage 2 sleep, a quiet one that precedes the transi-
tion into slow-wave sleep and an active one that precedes REM 
sleep. Other approaches to decompose the heterogeneity of sleep 
stages were suggested earlier by Molinari and Foulkes,28 who 
differentiated between tonic and phasic segments of NREM and 
REM sleep. Later Terzano et al29,30 introduced the concept of 
cyclic alternating patterns (CAP), a NREM pattern of transient 
electrocortical activity, which is distinct from background activ-
ity. The nonhomogeneity of the stages of normal sleep indicates 
that sleep staging is in no way exhaustive and much information 
is lost. Part of this information is nowadays summarized under 
the broad label microstructure of sleep, which contains patterns, 
arousals, CAP, and any other event with a latency or duration 
shorter than the half-minute epoch of sleep staging.31,32
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alternatives for Sleep analysis

Kemp33 has presented the outline of a computer-based digi-
tal sleep analysis that differentiates between wake, REM sleep, 
and NREM sleep, whereby the latter is seen as a continuous-
scale function. The representation of NREM sleep as a continu-
ous function has also been suggested by others.34,35 To ensure 
accuracy, the proposed sleep analyzer uses a minimum time 
resolution of 1 second. All features, extracted from EEG and 
non-EEG signals (e.g., cardiac, respiratory, movement, or other 
signals), are arranged in the same format, thus also allowing a 
detailed analysis of the interaction between the different signals. 
The high time resolution and the continuous scale for NREM 
sleep avoid the quite artificial breakdown of the feature space 
into separate classes of micro and macro events, which are a 
consequence of visual sleep staging.

Another concept for analyzing digital sleep data has been 
proposed by Agarwal and Gotman.36 In a first step, the poly-
graphic record is segmented into pattern-specific segments of 
variable-length epochs followed by a second step of self-orga-
nization of the segments into variable groups of homogeneous 
clusters. Different algorithms for sleep analysis by the segmen-
tation technique have been developed.37,38

Scoring Sleep by epocHS oF FixeD Duration

Sleep scoring is traditionally based on 30-second segments 
of sleep records, called epochs. The segmentation with a fixed 
epoch length of 30 seconds goes back to Loomis et al,39 who 
used a “paper cutting brain potential recorder” with a roll of 
paper, which was cut by a knife each 30 seconds, correspond-
ing to 30 cm of paper.39 Later, Dement and Kleitman14 retained 
scoring of a “fairly long stretch of record,” since shorter clas-
sifications, made every few seconds (p676), “would give the 
misleading impression of excessively frequent alternation be-
tween stages.”14 The decision was justified mainly with the 
changing pattern during a spindle stage and with the waxing 
and waning of delta waves. An epoch length of 30 or 20 sec-
onds, depending on paper speed, was also recommended by 
the R&K manual. Although longer (1-minute) epochs have 
been used by some groups,40 shorter epochs have been used 
only for research purposes. The AASM manual1 also recom-
mends sleep scoring in 30-second sequential epochs. This 
epoch duration is economic for hand scoring and quite ac-
curately reflects the time course and macrostructure of normal 
sleep, without the danger of too many stage shifts. In spite of 
these advantages, half-minute epochs are less suited to depict 
short-lived events, such as arousals,41 movements, or critical 
respiratory events, which are common in patients with a sleep 
disorder. As a result, sleep staging is generally less reliable 
if sleep is fragmented, as occurs in most patients with sleep 
disturbances.42-44

alternatives for analysis

As an alternative to using epochs of a fixed duration, adaptive 
segmentation has been proposed for EEG45-47 and sleep analy-
sis to identify and cluster quasi-stationary segments of variable 
duration.37,48-50 Another method to analyze and represent short-

lived patterns or changes in the background signal is the wave-
let transform,51,52 which differs from the Fourier transform by 
the way in which the information of the signal is localized in 
the time-frequency plane. In contrast to the Fourier transform, 
information of the time of occurrence and phase is retained in 
wavelet analysis.

From Single-cHannel to multicHannel Sleep 
recorDingS

Another critical point for sleep analysis by hand is the rapid 
expansion of data assessment in sleep recording. Although ear-
ly scoring was restricted to a very limited number of recording 
channels (EEG, EOG, and EMG), the recording of a variety of 
additional channels (respiratory, cardiac, additional EEG and 
EMG traces, and others) has become standard practice and, 
therefore, has been defined with recording techniques and stan-
dard parameter extraction in the new AASM scoring manual.1 
The additional signal analysis according to arousal rules, cardi-
ac rules, movement rules, and respiratory rules imposes a heavy 
load on the human visual analyzer.

alternatives for analysis

There is no obvious reason why the time-consuming task of 
analyzing the increasing mass of physiologic variables in sleep 
recordings should not be delegated in toto to automatic analysis. 
The human part in the man-machine interface of sleep analysis 
could be restricted essentially to 3 major tasks, (1) definition 
and development of algorithms; (2) surveillance of the analy-
sis process, including artifact decontamination; and (3) quality 
control of sleep analysis.

The results of the automatic analysis could be filled into 
a state plane, which is defined by the states waking, NREM 
sleep, and REM sleep, as discussed above. Such a systematic 
representation of physiologic signals, analyzed with a high time 
resolution, would also allow a systematic study of the interac-
tion of signal changes in 2 or more channels, which is not fea-
sible on the background of the traditional sleep staging. Finally, 
the questionable separation of events into 2 different classes, 
representing the so-called macrostructure and microstructure 
of sleep, could be avoided. Although, at present, sleep-stage–
bound measures are summarized as the macrostructure of sleep, 
all short-lived events are summarized as microstructure of 
sleep. This separation is quite artificial and results mainly from 
the fact that there is a large number of short-lived events, which 
are not represented in sleep stages.

Sleep Staging—viSual or computerizeD?

Although sleep staging was developed as a technique for 
visual sleep analysis, over the years, many attempts of com-
puterized sleep staging have been made.3 In most cases, al-
gorithms have been constructed in such a way that the results 
match the outcome from visual scoring with the R&K rules as 
closely as possible. There is a large amount of literature on the 
agreement rates between both approaches.3,44,53 Problems that 
hinder a straightforward and generally accepted solution have 
been mainly related to peculiarities of the R&K rules, artifact 
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Future sleep analysis will be based on a fully digitalized 1. 
data-acquisition platform. This allows a highly reliable 
and cost-effective data analysis. Although systems and 
software packages for the acquisition and analysis of sleep 
data are already available, it will be the task of the sleep 
science community to set the rules and guidelines for the 
further development of such systems.
The digital data structure allows the quantification of the 2. 
occurrence and characteristics of all EEG and non-EEG 
signals of sleep. Studies have shown that specific features 
of the electrophysiologic signals of sleep correlate with 
plastic processes, associated with memory formation, or 
aging. This underlines the usefulness and validity of direct 
sleep-signal analysis for clinical and research purposes.
The signal features can be back projected to the sleep-wake 3. 
cycle and to the REM-NREM cycles to depict and analyze 
their temporal distribution and regulation.
It has to be explored whether and if, affirmative, in which 4. 
way electrophysiologic signals can be combined into high-
er order units or substates of sleep.
Sleep staging should be no longer the gold standard for 5. 
sleep analysis.
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concluSion
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points for a research agenda
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