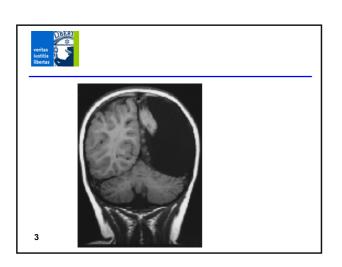


Prof. Dr. phil. Herbert Scheithauer

Arbeitsbereich Entwicklungswissenschaft und Angewandte Entwicklungspsychologie


1

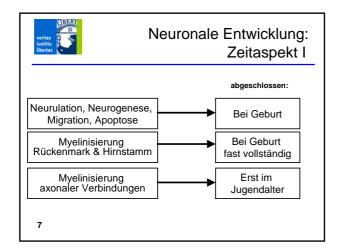
Seminar

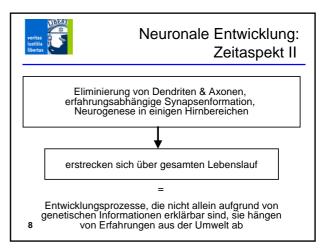
- LV 12-526
- Entwicklungswissenschaft I:
 Biopsychosoziale Grundlagen der
 Entwicklung

2

Gliederung

Neurobio-/-psychologische Grundlagen

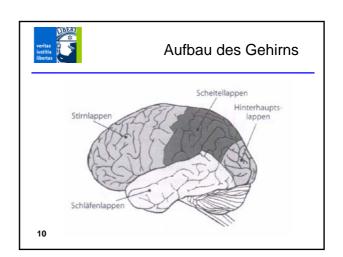

- Neuronale Entwicklung und Entwicklung wichtiger Gehirnbereiche
- 2. Neuronale Plastizität sowie Timing und Erfahrungen
- 3. Bildgebende Verfahren



Neuronale Entwicklung

- Induktion der Neuralplatte bzw. die Entstehung des Neuralrohrs
- Neuronale Proliferation (Zellmehrung)
- Zellmigration und Zelldifferenzierung
- Dendriten- und Axonwachstum
- Neuronen-/Synapsensterben
- Synaptogenese

Beispiel: Myelinisierung

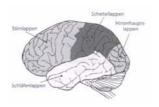

= Prozess, bei dem Axone mit Myelinschicht umhüllt werden

Studie mit misshandelten/missbrauchten Kindern:

- vermehrte Stressreaktionen = Einfluss auf Gehirnentwicklung
- vermehrte Katecholamin-/Kortisolausschüttung
- vermehrt Verlust an Neuronen
- Verzögerung in Myelinisierung

9

Pollak et al. (1998)



Synaptogenese I

Setzt ein....

- auditorischer Kortex (Schläfenlappen):1. postnataler M.
- visueller Kortex (Hinterhauptslappen): 3-4 M.
- Gyrus angularis & Broca-Areal (Sprachzentrum):
 6-8 M.

11

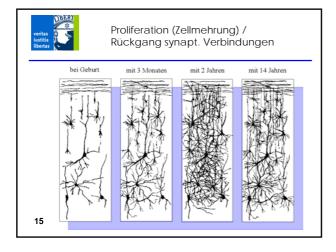
veritas iustitia libertas

Synaptogenese II

- präfrontaler Kortex (Handlungsplanung, soziale Fertigkeiten) Höhepunkt synaptischer Dichte ca. mit 1 Jahr
- Wachstum der weißen Substanz im Frontal- und Temporallappen
- Zellmehrung mit steigendem Alter im Corpus callosum (Balken), den Basalganglien (Motorik), der Amygdala (Emotion) und im Hippocampus (Informationsverarbeitung, Vergleich, Gedächtnis, räuml. Orientierung)

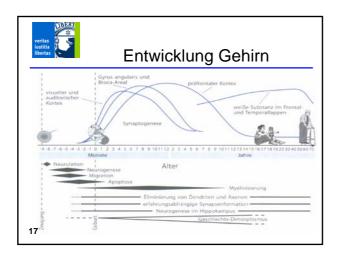
Studien zur Hirnentwicklung

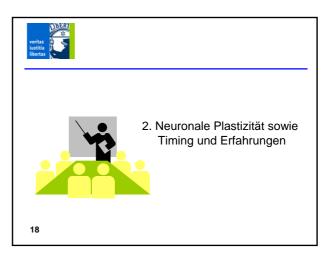
- NIMH Paediatric Neuroimaging Project (Giedd et al., 1996; 1999); MRT-Studien von Thompson et al. (2000)
- Daten zur Hirnentwicklung
- PET-Studien: Glukoseverbrauch und synaptische Organisation in Hirnbereichen
- Hirnaktivität lässt sich nachweisen und unterscheidet sich je nach Altersstufe.

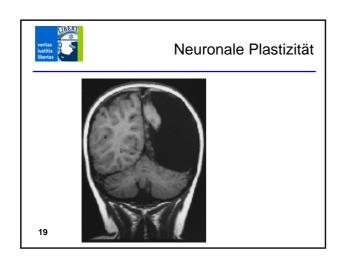

13

Studien zur Hirnentwicklung

- Im frontalen Kortex findet das schnellste Wachstum mit 3-6 Jahren statt. Glukoseverbrauch (= Gehirnaktivität) erreicht Spitze mit 4-6 Jahren und ist in dieser Zeit etwa doppelt so hoch wie bei Erwachsenen
- Zwischen 6.-15. Lebensjahr: die h\u00f6chsten Wachstumsraten in Bereichen f\u00fcr Sprache und Verst\u00e4ndnis r\u00e4umlicher Beziehungen
- Die Befunde zu den Durchblutungsraten des Gehirns gehen einher mit der Veränderung in der Zahl kortikaler Synapsen während der Entwicklung


14





Frage:

Synaptogenese in der Adoleszenz?

neuronale Plastizität

- Anpassungsmöglichkeit des Gehirns: Reaktion auf Umweltanforderungen
- durch Verbindung von Nervenzellen, Veränderungen der Struktur und der Funktionen
- Anpassung z.B. über Zunahme der Dendritenlänge, erhöhte Synapsenbildung
- Die Fähigkeit bei Läsionen im Kindesalter ausgeprägter als im Erwachsenenalter
- Nach Läsionen = funktionale Neuorganisation

neuronale Plastizität

funktionale Neuorganisation in Folge neuronaler Plastizität hängt ab von:

- Alter des Kindes bei Schädigung (unspezifisch zu spezifisch)
- Größe und Lage der Läsion
- Reifungszustand des verletzten Hirnsystems
- Integrität der umgebenen Areale und der entsprechenden Areale auf der anderen Hemisphäre

21

Intermodale Plastizität =

frühes Fehlen von Stimulation einer Sinnesmodalität (z.B. "Blindheit") führt dazu, dass sich die kortikale Repräsentation einer anderen Sinnesmodalität auf den Bereich ausweitet (z.B. Fühlen)

22

Erfahrungen

- Es gibt optimale Zeiten für bestimmte Arten von Erfahrungen
- Im Gegensatz zu kritischen Wachstumsperioden = nicht Vorbereitung auf spezifische Erfahrungen, sondern "sensible" Entwicklungszeitfenster

23

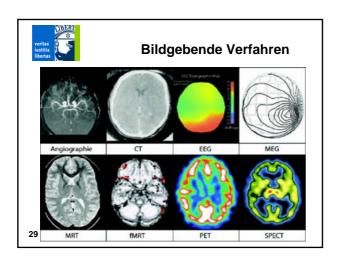
	LIBERT
veritas iustitia	
libertas	


Erfahrungen

Erfahrungserwartende	Erfahrungsabhängige
Prozesse	Prozesse
Vorbereitung auf Erfahrung kritische Phasen an Entwicklungsalter gebunden Ausbildung Fertigkeiten	Reaktion auf individuelle Erfahrungen unabhängig von kritischen Phasen Leben lang möglich Konsolidierung von Erinnerungen

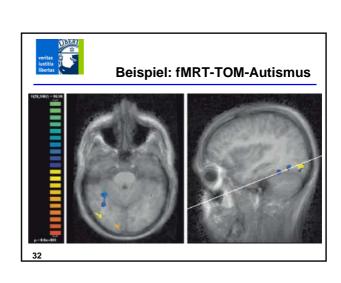
Zusammenhänge zwischen Hirnreifung und kognitiver Entwicklung werden zunehmend deutlich

25



Bildgebende Verfahren

- → wurden für klinischen Bereich entwickelt
- → zur Diagnostik
- → Tomografie = gr., "Schnitt"
- → Schnittbildverfahren:
 - 1. Schichtaufnahmeverfahren
 - 2. Szintigrafien



Beispiel: fMRT-TOM-Autismus

- Theory of Mind: TOM
- Teil: Erkennen von Emotionsausdruck im Gesicht
- Verknüpft mit Aktivation Gyrus fusiformis
- Beeinträchtigt bei Autismus

Human Brain Project

- → große anatomische Unterschiede in Gehirnen verschiedener Menschen
- → Systematik ("Atlanten"/Karten) und Vergleich der Bilder verschiedener Menschen
- → Ziel: komplettes Bild molekularer/zellulärer Prozesse, die der Entwicklung des menschlichen Gehirns zugrunde liegen

33

Homepage

Links unter: www.entwicklungswissenschaft.de

34

... bis zum nächsten Mal!

