FEDERATION OF THE
EUROPEAN SOCIETIES

OF NEUROPSYCHOLOGY

Brain Stimulation in Research and Practice

Stephen Jackson
University of Nottingham

stephen.Jackson@nottingham.ac.uk



mailto:Stephen.Jackson@nottingham.ac.uk

Lecture objectives

* Introduction to brain stimulation techniques

e Understand the basics of Non-invasive brain
stimulation using TMS

* Understand advantages and disadvantages
and potential uses of these techniques



NIBS offers a variety of approaches to study

and moadulate brain function
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TMS

* Relatively recent technique that induces
current in the brain by using a magnetic field
outside the skull
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Rapid-onset brief electrical
current generated in the coil

Produces rapid-onset brief
magnetic field pulse (up to
2 Tesla)

Induces rapid-onset brief
electrical field

Induces rapid-onset brief
electrical current in the brain
(mostly cortex)

Which has an effect on some task

Walsh V & Cowey, 2000.



Coil Winding




Basics of TMS

Induces electric current in
brain

Non-invasive

Painless

Not deep stimulation

Can be used repeatedly in
humans
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Intracranial field

Macroscopic response

— evoked neuronal
activity (EEG)

— changes in blood flow
and metabolism (PET,
fMRI, NIRS, SPECT)

— muscle twitches (EMG)

— changes in behaviour |
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Using TMS to quantify brain function



Measuring motor evoked potential (MEP)
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Types of TMS - Single TMS pulse

Single-pulse TMS

& T

Single pulse TMS can be used to elicit motor-evoked potentials

A non-invasive method for assessing the integrity of the central
motor pathway function and detecting abnormalities in
corticospinal pathways in various diseases



Motor evoked potentials

TMS to motor cortex induces motor evoked potentials (MEP’s) in muscle
MEPs are the most common measure of changes in cortical excitability

A variety of MEP parameters can be studied:
- Latency
- Amplitude
- Duration
- Area
-Silent period

Three basic physiological mechanisms may influence the size of the MEP:
- The number of motor neurones recruited in the spinal cord
- The number of motor neurones discharging more than once to the stimulus
- The synchronisation of the TMS-induced motor neuron discharges



The Motor-evoked potential — Stimulation Intensity

The threshold of stimulation can be an
indicator of abnormality in certain
disorders

Threshold is defined as the power level at
which a response can be detected in 50%
of the trials

Thresholds can be measured at rest and
when muscles are actively contracted
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Using single pulse TMS to investigate changes
in motor excitability during action selection

Single pulse TMS applied at different times during
motor preparation period
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At level of M1/PMd, multiple options are initially specified in parallel but are
then gradually eliminated through competitive process

Klein-Flugge & Bestmann, J Neurosci 2012




Gradual competition between action representations

a M1 excitability: Stimulus-locked
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Excitability distinguishes between chosen vs. not-chosen actions early on
(~200ms) in preparation/decision process

Klein-Flugge & Bestmann, J Neurosci 2012




Cortical excitability in M1 Single TMS Pulse (110% RMT)
preceding volitional k
movements in Tourette
syndrome
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Differences in IO curves may signal important changes in
cortical excitability

TMS recruitment curves for TS group and matched controls
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Draper et al., Current Biology, 2014




Types of TMS - Paired pulse techniques

Paired-pulse TMS
Paired pulse TMS can be used to examine I1 ’I - (R
modulation of motor cortex excitability by s
local circuits or afferent input from other inter-stimulus
brain areas interval [1 - 20 ms)
Dual (paired)-pulse TMS: stimulation with #

two distinct stimuli through the same coil at a O 0
range of different intervals. The intensities :

can be varied independently

Double TMS: stimulation with two separate O‘ 0
stimulation coils applied to different cerebral S TS

loci; the timing and stimulus intensity are
adjusted separately @




The Motor-evoked potential — Paired pulse
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Drug effects on TMS measures




Altered cortical GABA function in Tourette syndrome

TMS studies using paired-pulse protocols indicate impaired GABA, dependent
cortical inhibition.
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Combining techniques: Investigating white matter pathways
mediating functional connectivity

Double coil TMS (Pmc — M1)
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Combining techniques: Investigating white matter pathways
mediating functional connectivity

Double coil TMS (Pmc — M1)
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Advantages of combining TMS and
EEG recording.

 Example application: altered brain
connectivity during sleep

e Single-pulse TMS applied to Premotor
cortex.

 TMS effects propagate to remote sites
during wakefulness but NOT during
NREM sleep
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Cortical mapping

 TMS studies can address specifically the issue of
cortical reorganization by mapping procedures
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Cortical mapping — post stroke
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Mapping muscle representations in motor cortex in
Tourette syndrome using neuro-navigated TMS
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Using TMS to interfere with brain function; ‘virtual
lesion” approaches



Studying brain-behaviour relationships in humans

* Lesion Studies
— Single or few case studies
— Cognitive abilities may be globally impaired
— Comparisons must be made to healthy controls
* Neuroimaging (Brain Mapping) Technigues
— Non-invasive identification of brain injury correlated with a given behaviour
— Association of brain activity with behaviour
— Cannot demonstrate the necessity of a given region to a function
e Direct cortical Stimulation

— Invasive
— Time constraints limit the experimental paradigms
— Retesting is not possible



Advantages of using TMS in the study of brain-
behaviour relationships

Study of normal subjects eliminates the potential confounds of
additional brain lesions and pathological brain substrates

Acute studies minimize the possibility of plastic reorganization
of brain function

Repeated studies in the same subject
Study multiple subjects with the same experimental paradigm
Study internal network interactions by targeting different brain

structures during a single task and disrupting the same
cortical regions during different related tasks



Important issues in TMS experimental design for behavioural
studies

* Confounding effects

— Loud “click” during each pulse (attention)
— Tactile sensation at site of stimulation

— Blink reflex and sometimes scalp twitching

>> Need to control for these reactions



Important issues in TMS experimental design for behavioural
studies

* Control conditions for TMS experiment

— To ensure changes in performance be ascribed to TMS effects upon a
specific brain area

— Generally, need a combination of control conditions

Control
conditions

Control task
Sham Vertex Control . : /.
: : : : : conditions within
stimulation stimulation sites -

An illustrative example




Braille Alexia
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Role of 'visual” cortex in tactile information
processing in early blind subjects
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Hamilton et al. TICS, 2001
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Using TMS to modulate with brain function



Neuronal oscillations, cortical excitability, balanced excitation and inhibition
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Brain oscillations reflect synchronized firing of neural populations

Occipito-parietal EEG

Izhikevich&Edelman, PNAS 2008
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Alpha oscillations (8-13Hz) in LGN and over occipital
areas are in synchrony (Crunelli et al., 2011)




Pre-stimulus cortical oscillations predicts perception

Pre-stimulus: -1000 to Oms

Report
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Pre-stimulus oscillations

Occipito-parietal oscillatory signatures in the alpha-
band (8-14Hz) prior to a stimulus predicts the
perceptual fate of the stimulus

VanDijk et al. J Neurosci, 2008




Behavioural performance is predicted by brain oscillations

Hypothesis: Visual perception is influenced by oscillatory power and phase

Electrophysiology

A. neural excitability
cycles with phase
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B. Alpha-power
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Hlvev 'y

A.

B.

Visual perception

discrete sensory sampling
theory
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modulated by attention
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Can rhythmic TMS be used to entrain brain oscillations and

alter behavior?

Rhythmic pre-stimulus TMS to entrain oscillations and
bias perception

Hypothesis:

Entrainment conceivable!
® time

i . * >1 TMS pulse that are in phase
Visual Stim

| f//)i/'
rhythmic * .
« Synchronization of more and more neurons to

the TMS train




TMS-EEG

TMS-induced entrainment

Pre-TMS MEG-session
rTMS, + ldentification of individual alpha-generators
(TMS, 5 pujses (through spatial attention task)
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a | ' : Alpha-TMS |
. atIAF: 11Hz

» short TMS bursts (n=5 pulses)
+ TMS over right alpha generator
+ TMS at individual alpha frequency

» several TMS controls

A% . alpha-TMS creates a local
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Thut et al. Current Biology, 2011




A Time-frequency analysis per TMS-regime
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TMS induced phase-locking
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Motor cortical entrainment through median nerve stimulation
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Using TMS to induce ‘offline’ effects



Types of TMS - Repetitive rTMS

Single pulse TMS shows surprisingly few
effects on cognitive processes

Repetitive (r)TMS may induce effects
that outlast the stimulation period

rTMS developed in part to probe higher
order cortical function

rTMS effects have been used as a tool to
disrupt temporarily activity in local or
remote cortical areas

Repetitive TMS (rTMS)
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Effects on motor-evoked potentials - Low frequency rTMS

Low frequency (slow) TMS (<1Hz)
* Suppresses cortical excitability
* Raises motor threshold
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Touge et al., 2001 Muellbacher et al., 2000



High frequency (rapid-rate) TMS (>1Hz)
 Enhances (facilitates) cortical excitability

e Lowers motor threshold
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Pascual Leone et al., 1998
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The Motor-evoked potential — Theta-burst

Repetitive TMS protocols may modulate cortical excitability
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Variability of response to rTMS

Effects of rTMS on cortical excitability are highly variable across individuals

cTBS, N=52

Normalized MEP
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Hamada et al., 2012

51



Fractional increase in MEP after iTBS
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Personalising non-invasive brain stimulation in psychiatry

New units of analysis in the framework of precision psychiatry.

A Traditional RCT analysis New units of analysis
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Does it matter when stimulation is delivered?

a —=-Negative Peak Trigger
—s+=Positive Peak Trigger
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Zrenner et al., Brain Stimulation, 2018




Real-Time Closed-loop TMS-EEG

Online EEG
Recording

Filter Alpha band

Phase
Detection
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Trigger




Rodent study of closed-loop phase-dependent stimulation

Closed-loop phase-dependent stimulation leads to sustained
modulation of beta oscillations
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Open-field recordings McNamara et al, Biorixv/In submission



Phase-dependent median nerve stimulation used to modulate
tremor in Parkinson’s disease

EMG reference

Stimulator

Extract the
tremor phase
in real time

Band-pass
filter dominant
axis from
2 Hz to 8 Hz

Identify
dominant axis
for phasic
stimulation

Compute the

power spectral

density of the
three axes

Triaxial
accelerometer
on patient's
most tremulous
hand

Stimulation
phase-locked
to random value
(0-330°, 30°
resolution,

5 pulses/phase)

Apply Hilbert
transform
to band-pass
filtered
accelerometer
signals

Compute the
change in
tremor severity
at each phase
within
5-second intervals

Derive
phase-amplitude
profiles displaying
the median change
in severity
per phase

Significant
suppression
Bins 12/828
Plots 12/69

Participants

Significant Chance
amplification level
16/828 3.45/1656
12/69 345/138
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Arruda et al., J. NeuroEngineering and Rehab., 2021




Does rTMS enhance learning through inducing variability?

Inducing neural variability (‘noise’) using rTMS

'2‘102 pre In a recent pre-clinical study 10HZ
-a;if (excitatory) rTMS was applied to the visual
#OO 0.5 1 0 0.5 1 Cortex'

Reproducibility

Surface map of V1: colours indicate the
preference for lines of a particular
orientation.

After rTMS the map has been altered. The
orientation preferences are not as

reproducible as prior to rTMS and are less
specific to orientation (they are “noisier”)

0 07 MM Kozyrev et al., PNAS, 2018

Reproducibility




Does rTMS enhance learning through inducing variability?

orientation, preferred-stimulated [deg]
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Results

* rTMS significantly enhanced learning of
trained orientations relative to sham-TMS

* No difference between rTMS and sham-TMS
for non-trained orientations

Kozyrev et al., PNAS, 2018




Considerations for studies using NiBS

Where to stimulate? When to stimulate?

Determine target site &
device position/orientation
for stimulation based on...

relative to task or spontaneous event
for stimulation based on...
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local direction of current flow occurrence of specific events

Determine target onset/time window

How to stimulate?

Determine specfic parameters

for stimulation such as...

Dose-Response Curve
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Bergmann et al., Neurolmage, 2016




