
Machine learning

MSc Social, Cognitive, and Affective Neuroscience SoSe 2020

Prof. Dr. Dirk Ostwald

1

(8) Neural networks

2

Model formulation

• Definitions and machine learning/deep learning/artificial intelligence jargon

Learning

• Cost function gradient descent

Backpropagation

• Cost function gradient evaluation

Universal approximation theorem

• The theory of function approximation by neural networks

• To be discussed in future iterations of the course

3

Model formulation

Learning

Backpropagation

4

Bibliographic remarks

Introductions to neural networks can be found in all standard machine learning books,

such as Bishop (2006), Alpaydin (2014), Barber (2012), Duda et al. (2001), and

Murphy (2012). Haykin (2009) is a classic reference on neural networks for engineers.

Contemporary deep learning jargon and latest trends, but few mathematical and

implementational details, are discussed in Goodfellow et al. (2017). Michael Nielsen’s

Online Book “Neural networks and deep learning” is a useful modern resource and

not too confusing. A clear and useful reference on the backpropagation algorithm is

Mishachev (2017).

5

http://neuralnetworksanddeeplearning.com/index.html

Model formulation

Learning

Backpropagation

6

Model formulation

Overview

• Neural networks are parameterized multivariate, vector valued functions.

• Neural networks are serially concatenated linear and nonlinear functions.

• The (affine) linear functions are called input weighting functions.

• Input weighting functions parameters constitute the network’s parameter set.

• The nonlinear functions are called activation functions.

• Activation functions do not have parameters.

7

Model formulation

Definition (Input weighting function, activation vector, weight matrix)

In the context of neural networks, affine-linear multivariate vector-valued functions

of the form

Φ : Rn → Rm, a 7→ Φ(a) := Wa =: z with W ∈ Rm×n (1)

are called input weighting functions. The vector a ∈ Rn is called activation vector,

the matrix W ∈ Rm×n is called weight matrix, and the vector z ∈ Rm is called

weighted input.

8

Model formulation

Definition (Coordinate-wise activation function, activation function)

In the context of neural networks, multivariate vector-valued functions of the form

Σ : Rn → Rn, z 7→ Σ(z) :=


σ(z1)

...

σ(zn)

 =: a, (2)

with

σ : R→ R, zi 7→ σ(zi) =: ai for all i = 1, ..., n (3)

are called component-wise activation functions. The functions σ : R→ R are called

activation functions.

9

Model formulation

Definition (Homogeneous neural network)

A multivariate vector-valued function

f : Rn0 → Rnk , x 7→ f(x) =: y (4)

is called a homogeneous k-layered neural network, if f is of the form

f : Rn0 Φ1

−−→ Rn1 Σ1

−−→ Rn1 Φ2

−−→ Rn2 Σ2

−−→ Rn2 Φ3

−−→ · · ·

· · · Φk−1

−−−−→ Rnk−1
Σk−1

−−−−→ Rnk−1
Φk−−→ Rnk Σk−−→ Rnk (5)

where

Φl : Rnl−1 → Rnl , al−1 → Φl
(
al−1

)
=: zl for l = 1, ..., k (6)

are linear input weighting functions, and

Σl : Rnl → Rnl , zl → Σl
(
zl
)

=: al for l = 1, ..., k (7)

are coordinate-wise activation functions. For x ∈ Rn0 , a homogeneous neural network

takes on the value

f(x) := Σk
(

Φk
(

Σk−1
(

Φk−1
(

Σk−2
(
· · ·
(
Σ1
(
Φ1 (x)

)
· · ·
))))))

. (8)

10

Model formulation

Remarks

• al =
(
al1, ..., a

l
nl

)T ∈ Rnl is called activation vector of layer l.

• The ali ∈ R for i = 1, ..., nl are called neuron activations of layer l.

• Layer l = 0 is called the network input layer and has dimension n0.

• The activation vector of layer l = 0 is called input and is denoted x := a0.

• Layer l = k is called the network output layer and has dimension nk.

• The activation vector of layer l = k is called output and is denoted y := ak.

• Layers l = 1, ..., k − 1 are called hidden layers.

• Typically nl ≥ n0 and nl > nk for the hidden layers 1 ≤ l ≤ k − 1.

11

Model formulation

Remarks

• Let W l
ij ∈ R denote the ijth entry in the lth “synaptic” weight matrix, i.e.,

W l =
(
W l

ij

)
1≤i≤nl,1≤j≤nl−1

∈ Rnl×nl−1 (9)

• W l
ij is the “synaptic strength” between neuron i in layer l and neuron j in layer l− 1.

• The weighted input (“post-synaptic potential”) of neuron i in layer l = 1, ..., k is

zli =

nl−1∑
j=1

W l
ija

l−1
j . (10)

• The activation (“mean firing rate”) of neuron i in layer l = 1, ..., k is

ali = σ

nl−1∑
j=1

W l
ija

l−1
j

 . (11)

12

Model formulation

Definition (Activation function examples)

Commonly used activation functions and their derivatives are listed below.

Function name Definition Derivative

Standard logistic σ (zi) := 1
1+exp(zi)

σ′ (zi) =
exp(zi)

(1+exp(zi))2

Hyperbolic tangent σ (zi) := tanh (zi) σ′ (zi) = 1− tanh2 (zi)

ReLU σ (zi) := max(0, zi) σ′ (zi) =


0, zi < 0

∅, zi = 0

1, zi > 0

Leaky ReLU σ (zi) :=

{
0.01zi, zi ≤ 0

zi, zi > 0
σ′ (zi) =

{
0.01, zi ≤ 0

1, zi > 0

Remarks

• ReLU is the acronym for “rectified linear unit”.

13

Model formulation

Example (Structure of a homogeneous neural network)

k = 3, n0 = 2, n1 = 3, n2 = 3 and n3 = 1.

x =: a0

a0 =

(
a0

1

a0
2

)
W 1 =

w1
11 w1

12

w1
21 w1

22

w1
31 w1

32

 z1 =

z1
1

z1
2

z1
3

 Σ1 =

σ
(
z1
1

)
σ
(
z1
2

)
σ
(
z1
3

)
 = a1

a1 =

a1
1

a1
2

a1
3

 W 2 =

w2
11 w2

12 w2
13

w2
21 w2

22 w2
23

w2
31 w2

32 w2
33

 z2 =

z2
1

z2
2

z2
3

 Σ2 =

σ
(
z2
1

)
σ
(
z2
2

)
σ
(
z2
3

)
 = a2

a2 =

a2
1

a2
2

a2
3

 W 3 =
(
w3

11 w3
12 w3

13

)
z3 =

(
z3
1

)
Σ3 =

(
σ
(
z3
1

))
= a3

a3 =: y

14

Model formulation

Example (Structure of a homogeneous network)

k = 3, n0 = 2, n1 = 3, n2 = 3 and n3 = 1.

15

Model formulation

Theorem (Affine neural network)

An affine neural network can be obtained from a homogeneous neural network by

(1) augmenting the input vector by a 1, such that x = (x1, ..., xn0−1, 1)T ,

(2) augmenting the weight matrices W l by a row of form (0, ..., 0, 1) for all l < k,

(3) setting σ
(
zlnl

)
:= id

(
zlnl

)
for all l < k.

Remarks

• The entries of the last columns of W l, bar the last entry, are called biases.

• The W l row (0, ..., 0, 1) serves to reproduce the activation vector augmentation.

• The identity function evaluates to id
(
zlnl

)
= id(1) = 1 for l < k.

• The activation of neuron i, i = 1, ..., nl − 1 in layer l = 1, ..., k − 1 is

ali = σ

nl−1−1∑
j=1

W l
ija

l−1
j + bli

 with bias bli := W l
i,nl−1

. (12)

• Instead of a proof, we consider an example.

16

Model formulation

Example (Homogeneous and affine neural network structures)

Homogeneous neural network for k = 2, n0 = 2, n1 = 3, n2 = 1, and a0 := x

a0 =

a0
1

a0
2

 W1 =


w1

11 w1
12

w1
21 w1

22

w1
31 w1

32

 z1 =


z11

z12

z13

 Σ1 =


σ
(
z11

)
σ
(
z12

)
σ
(
z13

)
 = a1

a1 =


a1
1

a1
2

a1
3

 W2 =

(
w2

11 w2
12 w2

13

)
z2 =

(
z21

)
Σ2 =

(
σ
(
z21

))
= y

Affine neural network for k = 2, n0 = 3, n1 = 4, n2 = 1, and a0 := x

a0 =


a0
1

a0
2

1

 W1 =



w1
11 w1

12 w1
13

w1
21 w1

22 w1
23

w1
31 w1

32 w1
33

0 0 1


z1 =



z11

z12

z13

1


Σ1 =



σ (z1)

σ (z2)

σ (z3)

id(1)


= a1

a1 =



a1
1

a1
2

a1
3

1


W2 =

(
w2

11 w2
12 w2

13 w2
14

)
z2 =

(
z21

)
Σ2 =

(
σ
(
z21

))
= y

17

Model formulation

Definition (Hadamard operator form of network function values)

Let

Σ : Rn → Rn, z 7→ Σ(z) := Σ



z1
...

zn


 =


σ(z1)

...

σ(zn)

 (13)

denote a component-wise activation function. Then we write

Σ ◦ z := Σ(z) (14)

and call this the Hadamard operator form of a component-wise activation function. With

the Hadamard operator form of the component-wise activation functions and the standard

matrix product, the value of a network function with argument x can be written as

f(x) = ΣL ◦WL · Σk−1 ◦Wk−1 · ΣL−2 · · ·Σ2 ◦W 2 · Σ1 ◦W 1 · x. (15)

18

Model formulation

Learning

Backpropagation

19

Learning

Overview

• Training refers to adjusting the neural network’s weight parameters.

• Good parameters minimize the deviation between predicted and training data output.

• This deviation is formalized in terms of a cost function.

• Various cost functions are in common use.

• Gradient descent is used to minimize the cost with respect to the parameters.

• In machine learning lingo, neural network training is a form of supervised learning.

• From a statistics perspective, this is a parameter estimation problem.

20

Learning

Definition (Neural network training set)

A neural network training set is a set of vector pairs

D := {(x(i), y(i))}ni=1 ∈ Rn0×n × Rnk×n, (16)

where x(i) ∈ Rn0 is referred to as feature vector and y(i) ∈ Rnk is referred to as target

vector. Typical target vector formats include

y(i) ∈ {0, 1} Binary classification

y(i) ∈ {0, 1}nk ,
∑nk

i=1 yi = 1, nk > 1 nk-fold classification with “one-hot-encoding”

y(i) ∈ Rnk , nk > 1 Regression problems

For example, in fMRI MVPA multiclass classification

• n0 is the number of voxels, x(i) ∈ Rn0 is a voxel activation pattern,

• the y(i) ∈ {0, 1}nk ,
∑n

i=1 yi = 1 for nk > 1 label experimental conditions, and

• n is the number of voxel activation pattern/condition observations.

21

Learning

Definition (Neural network training)

Neural network training is the process of adapting the vector of weight matrices

W :=
{

vec
(
W l
)}k

l=1
∈ Rp,W l ∈ Rnl×nl−1 for l = 1, ..., k and p :=

k∑
l=1

nl−1nl (17)

with the aim of minimizing a deviation criterion between the weight-adapted neural networks

final layer activation f
(
x(i)

)
∈ Rnk and the associated value of the target vector y(i) ∈ Rnk

across all training exemplars
(
x(i), y(i)

)
, i = 1, ..., n in the training set D. To emphasize

the dependence of a neural network’s input-specific output value on its parameter vector,

we write

fW (x) := f(x) ∈ Rnk for x ∈ Rn0 (18)

in the following.

Remarks

• A neural network has p parameters.

• The “criterion of deviation” is formalized in terms of a cost function.

22

Learning

Definition (Neural network cost functions)

An additive neural network cost function is a function of the form

CD : Rp → R, W 7→ CD (W) :=
1

n

n∑
i=1

c
(
fW

(
x(i)

)
, y(i)

)
, (19)

where

c : Rn0 × Rnk → R, (fW (x), y) 7→ c (fW (x), y) (20)

denotes a training exemplar cost function. With a := fW (x) = ak, we may equivalently

write

c : Rn0 × Rnk → R, (a, y) 7→ c (a, y) (21)

leaving the dependence of the training exemplar cost function on the input vector x and

the neural network’s parameter set W implicit. Note that we write the vector of partial

derivatives of a training exemplar cost function with respect to the elements ai, i = 1, ..., nk

evaluated for input x ∈ Rn0 and output y ∈ Rnk as

∇ac (a, y) =
(

∂
∂a1

c(a, y), ..., ∂
∂ank

c(a, y)
)T
∈ Rnk . (22)

23

Learning

Definition (Additive cost function examples)

For a training set D := {(x(i), y(i))}ni=1 and with a(i) := fW
(
x(i)

)
for i = 1, ..., n,

exemplary additive cost functions are

Quadratic cost CD (W) := 1
n

∑n
i=1

1
2
||a(i) − y(i)||

Exponential cost CD (W) := 1
n

∑n
i=1 exp

(
−
∑nk

j=1

(
a

(i)
j − y

(i)
j

)2
)

Cross entropy cost CD (W) := − 1
n

∑n
i=1

∑nk
j=1 y

(i)
j ln a

(i)
j +

(
1− y(i)

j

)
ln
(

1− a(i)
j

)
,

24

Learning

Definition (Neural network gradient descent)

Let D denote a neural network training data set comprising n training exemplars, let fW
denote a k-layered neural network with parameter vector W ∈ Rp, and let CD denote an

additive neural network cost function with associated training exemplar cost function c.

Then a gradient descent algorithm for the optimization of the neural network’s parameter

vector is given by

Initialization

Set W(0) ∈ Rp and α > 0 appropriately.

Iterations

For j = 1, 2, ... until convergence set

W(j) :=W(j−1) − α
n∑

i=1

∇c
(
fW(j−1)

(
x(i)

)
, y(i)

)
, (23)

where ∇c denotes the gradient of the training exemplar cost function with respect to the

neural network parameter vector W ∈ Rp.

Remark

• W(j) is adapted in the average gradient direction over training exemplars.

25

Model formulation

Learning

Backpropagation

26

Backpropagation

Motivation

• Neural network gradient descent parameter learning requires ∇c (fW (x), y).

• ∇c (fW (x), y) comprises all partial derivatives

∂

∂W l
ij

c (fW(x), y) for i = 1, ..., nl, j = 1, ..., nl−1, l = 1, ..., k. (24)

• A naive approach is to estimate ∇c (fW (x), y) by the numerical derivatives

∂

∂W l
ij

c (fW(x), y) ≈
1

ε

(
c
(
fW̃(x), y

)
− c (fW(x), y)

)
with W̃ :=W + εe

l
ij (25)

for a small ε > 0 and where elij ∈ Rp is a vector of 0s bar a 1 at location i, j, l.

• This naive approach requires nl−1 · nl · l + 1 evaluations of c and hence of fW (x).

• A single evaluation of c for a training exemplar (x, y) is called a forward pass.

• Backpropagation is an alternative algorithm for computing ∇c (fW (x), y).

• Backpropagation requires only a single forward pass and a backward pass.

• In the following, we introduce the “backward pass” recursion

27

Backpropagation

Theorem (Backpropagation recursion for neural networks)

Let fW denote a k-layered neural network, let c denote a single training exemplar cost

function, and let

Σ̃l :=
(
σ′, ..., σ′

)T
∈ Rnl (26)

denote the derivative of the neural network’s lth layer’s component-wise activation function.

Then the partial derivatives of c with respect to the neural network parameters W l for

l = k, k − 1, ..., 1 can be computed according to the following backpropagation recursion:

Initialization

Set Wk+1 := 1 and δk+1 := ∇ac
(
ak, y

)
.

Iterations

For l = k, k − 1, k − 2, ..., 1, set

δ
l

=

((
W
l+1
)T

δ
l+1

)
◦ Σ̃

l
(
z
l
)

and
∂

∂W l
c (fW(x), y) := δ

l
Σ
l−1

(
z
l−1
)T

, (27)

where Σ0
(
z0
)

:= x.

28

Backpropagation

Proof

We prove the validity of the backpropagation recursion by induction with respect to the number of layers

j of a neural network. To this end, we first validate the backpropagation recursion directly for the case

of k := 3 (base case). We then assume the validity of the backpropagation recursion for some k and

show that it is also valid for a neural network with an additional layer, i.e., for k + 1 (inductive step).

Throughout, we make repeated use of the chain rule of differentiation, i.e.,

D(f ◦ g)(x) = Df(g(x))Dg(x), (28)

and we make repeated use of the matrix derivative

∂

∂A
AB = B

T
. (29)

Base case validation for k := 3

We consider the case of a 3-layered neural network, i.e., a multivariate real-valued function of the form

fW(x) := Σ
3
(
W

3
Σ

2
(
W

2
Σ

1
(
W

1
x
)))

(30)

and its partial derivatives with respect to W 3,W 2, and W 1. In the following, we will first evaluate

the respective partial derivatives directly and then evaluate them using the backpropagation recursion to

validate their equivalence.

29

Backpropagation

Proof (cont.)

We first evaluate the partial derivative ∂
∂W3 c(fW(x), y) directly. To this end, we first note that the

only appearance of W 3 is in the following formulation of the cost function

c (fW(x), y) = c
(

Σ
3
(
W

3
Σ

2
(
z

2
))

, y
)
. (31)

We then have

∂

∂W 3
c (fW(x), y) =

∂

∂W 3
c
(

Σ
3
(
W

3
Σ

2
(
z

2
))

, y
)

= ∇ac
(
a

3
, y
) ∂

∂W 3

(
Σ

3
(
W

3
Σ

2
(
z

2
))

, y
)

= ∇c
(
a

3
, y
)

Σ̃
3
(
W

3
Σ

2
(
z

2
)) ∂

∂W 3

(
W

3
Σ

2
(
z

2
))

= ∇ac
(
a

3
, y
)

Σ̃
3
(
z

3
)(

Σ
2
(
z

2
))T

(32)

We next evaluate ∂
∂W3 c(fW(x), y) by means of the backpropagation recursion. To this end, we first

note that for l = 3 and with W 4 = 1

δ4 = ∇ac
(
a3, y

)
δ3 = δ4

(
W 4
)T

Σ̃3
(
z3
)

= ∇ac
(
a3, y

)
· 1 · Σ̃3

(
z3
)

= ∇ac
(
a3, y

)
Σ̃3
(
z3
)

30

Backpropagation

Proof (cont.)

For the partial derivative with l = 3, we thus have

∂

∂W 3
c (fW(x), y) = δ

3
Σ

2
(
z

2
)

(33)

= ∇c
(
a

3
)

Σ̃
3
(
z

3
)(

Σ
2
(
z

2
))T

(34)

which corresponds to the partial derivative as evaluated directly above.

We next evaluate the partial derivative ∂
∂W2 c(fW(x), y) directly. To this end, we first note that the

only appearance of W 2 is in the following formulation of the cost function

c (fW(x), y) = c
(

Σ
3
(
W

3
Σ

2
(
W

2
Σ

1
(
z

1
))))

(35)

With the chain rule of differentiation, we then have

∂

∂W 2
c (fW(x), y) =

∂

∂W 2
c
(

Σ
3
(
W

3
Σ

2
(
W

2
Σ

1
(
z

1
)))

, y
)

= ∇ac
(
a

3
, y
) ∂

∂W 2

(
Σ

3
(
W

3
Σ

2
(
W

2
Σ

1
(
z

1
))))

= ∇ac
(
a

3
, y
)

Σ̃
3
(
z

3
) ∂

∂W 2

(
W

3
Σ

2
(
W

2
Σ

1
(
z

1
))) (36)

31

Backpropagation

Proof (cont.)

... = ∇ac
(
a

3
, y
)

Σ̃
3
(
z

3
)
W

3 ∂

∂W 2

(
Σ

2
(
W

2
Σ

1
(
z

1
)))

= ∇ac
(
a

3
, y
)

Σ̃
3
(
z

3
)
W

3
Σ̃

2
(
z

2
) ∂

∂W 2

(
W

2
Σ

1
(
z

1
))

= ∇ac
(
a

3
, y
)
· Σ̃3

(
z

3
)
W

3 · Σ̃2
(
z

2
)(

Σ
1
(
z

1
))T

(37)

We next evaluate ∂
∂W2 c(fW(x), y) by means of the backpropagation recursion. To this end, we first

note that for l = 2 and with the results for l = 3 above

δ3 = ∇ac
(
a3, y

)
Σ̃3
(
z3
)

δ2 = δ3W 3Σ̃2
(
z2
)

= ∇ac
(
a3, y

)
Σ̃3
(
z3
)
W 3Σ̃2

(
z2
)

For the partial derivative with l = 2, we thus have

∂

∂W 2
c (fW(x), y) = δ

2
(

Σ
1
(
z

1
))T

(38)

= ∇ac
(
a

3
, y
)
· Σ̃3

(
z

3
)
W

3 · Σ̃2
(
z

2
)(

Σ
1
(
z

1
))T

, (39)

which corresponds to the partial derivative as evaluated directly above.

32

Backpropagation

Proof (cont.)

We next evaluate the partial derivative ∂
∂W1 c(fW(x), y) directly. To this end, we first note that the

only appearance of the parameter W 1 is in the following formulation of the cost function

c(fW(x), y) = c
(

Σ
3
(
W

3
Σ

2
(
W

2
Σ

1
(
W

1
x
))))

. (40)

With the chain rule of differentiation, we then have

∂

∂W 1
c(fW(x), y)

=
∂

∂W 1
c
(

Σ
3
(
W

3
Σ

2
(
W

2
Σ

1
(
W

1
x
)))

, y
)

= ∇ac
(
a

3
, y
) ∂

∂W 1

(
Σ

3
(
W

3
Σ

2
(
W

2
Σ

1
(
W

1
x
))))

= ∇ac
(
a

3
, y
)

Σ̃
3
(
z

3
)
W

3 ∂

∂W 1

(
Σ

2
(
W

2
Σ

1
(
W

1
x
)))

= ∇ac
(
a

3
, y
)

Σ̃
3
(
z

3
)
W

3
Σ̃

2
(
z

2
)
W

2 ∂

∂W 1

(
Σ

1
(
W

1
x
))

= ∇ac
(
a

3
, y
)

Σ̃
3
(
z

3
)
W

3
Σ̃

2
(
z

2
)
W

2
Σ̃

1
(
z

1
) ∂

∂W 1

(
W

1
x
)

= ∇ac
(
a

3
, y
)
· Σ̃3

(
z

3
)
W

3 · Σ̃2
(
z

2
)
W

2 · Σ̃1
(
z

1
)
x
T
.

(41)

33

Backpropagation

Proof (cont.)

We next evaluate ∂
∂W1 c (fW(x), y) by means of the backpropagation recursion. To this end, we first

note that for l = 1 and with the results for l = 2 above

δ2 = ∇ac
(
a3, y

)
· Σ̃3

(
z3
)
W 3 · Σ̃2

(
z2
)

δ1 = δ2W 2 · Σ̃1
(
z1
)

= ∇ac
(
a3
)
· Σ̃3

(
z3
)
W 3 · Σ̃2

(
z2
)
W 2 · Σ̃1

(
z1
)

For the partial derivative with l = 1 and with Σ0(z0) := x we thus have

∂

∂W1
c(fW (x), y) = δ

1
(
Σ

0
(
z
0
))T

= ∇ac
(
a
3
, y
)
· Σ̃3

(
z
3
)
W

3 · Σ̃2
(
z
2
)
W

2 · Σ̃1
(
z
1
) (

Σ
0
(
z
0
))T

which corresponds to the partial derivative as evaluated directly above. This completes the validation of

the base case for k = 3.

34

Backpropagation

Proof (cont.)

Induction step: k + 1

To be continued ...

35

Model formulation

• Definitions and machine learning/deep learning/artificial intelligence jargon

Learning

• Cost function gradient descent

Backpropagation

• Cost function gradient evaluation

Universal approximation theorem

• The theory of function approximation by neural networks

• To be discussed in future iterations of the course

36

References

Alpaydin, E. (2014). Introduction to Machine Learning.

Barber, D. (2012). Bayesian Reasoning and Machine Learning. Cambridge University Press.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Information Science and

Statistics. Springer, New York.

Duda, R., Hart, P., and Stork, D. (2001). Pattern Classification. Wiley.

Goodfellow, I., Bengio, Y., and Courville, A. (2017). Deep Learning. The Mit Press,

Cambridge, Massachusetts.

Haykin, S. S. (2009). Neural Networks and Learning Machines. Prentice Hall, New York,

3rd ed edition.

Mishachev, N. M. (2017). Backpropagation in matrix notation. arXiv:1707.02746 [cs].

Murphy, K. P. (2012). Machine Learning: A Probabilistic Perspective. Adaptive Computa-

tion and Machine Learning Series. MIT Press, Cambridge, MA.

37

	Neural networks
	Model formulation
	Learning
	Backpropagation

	References

