Statistics for Data Science

MSc Data Science WiSe 2019/20

Prof. Dr. Dirk Ostwald
(4) Random variable transformations
Bibliographic remarks

The majority of the presented material closely follows DeGroot and Schervish (2012, Sections 3.8 - 3.9). The results on the combinations and transformations of Gaussian variables follows Casella and Berger (2002, Section 5.3)
Random variable transformations

- Transformations of discrete random variables
- Direct calculation for continuous random variables
- The probability integral transform
- The univariate probability density function transform
- The multivariate probability density function transform
- Linear combinations of random variables
- Combinations and transformations of Gaussian variables
Random variable transformations

- Transformations of discrete random variables
- Direct calculation for continuous random variables
- The probability integral transform
- The univariate probability density function transform
- The multivariate probability density function transform
- Linear combinations of random variables
- Combinations and transformations of Gaussian variables
Transformations of discrete random variables

Theorem (Transformations of discrete random variables)

Let X be a discrete random variable with PMF p_X and let $Y = f(X)$ for some function f on the outcome space of X. Then the PMF of the random variable Y is given by

$$p_Y: \mathcal{Y} \rightarrow [0, 1], y \mapsto p_Y(y) := \mathbb{P}(Y = y) = \mathbb{P}(f(X) = y) = \sum_{\{x | f(x) = y\}} p_X(x). \quad (1)$$
Example (Discrete uniform distribution)

Let X be a discrete random variable with a finite outcome set \mathcal{X} and probability mass function

$$p : \mathcal{X} \rightarrow \mathbb{R}_{\geq 0}, x \mapsto p(x) := \frac{1}{|\mathcal{X}|}.$$ \hspace{1cm}(2)

Then X is said to be distributed according to a discrete uniform distribution, for which we write $X \sim U(|\mathcal{X}|)$. We abbreviate the PMF of a discrete uniform random variable by

$$U(x; |\mathcal{X}|) := \frac{1}{|\mathcal{X}|}.$$ \hspace{1cm}(3)
Transformations of discrete random variables

Example (Transformation of a discrete random variables)

Let X have the discrete uniform distribution on \mathbb{N}_9, i.e.,

$$p_X : \mathbb{N}_9 \rightarrow [0, 1], x \mapsto p_X(x) = \frac{1}{|\mathbb{N}_9|} = \frac{1}{9}. \quad (4)$$

Let $Y = f(X)$ with

$$f : \mathbb{N}_9 \rightarrow \mathbb{N}_0^4, x \mapsto f(x) := |x - 5|. \quad (5)$$

We then have

$$p_Y : \mathbb{N}_4^0 \rightarrow [0, 1],$$

$$\begin{align*}
0 &\mapsto p_Y(0) = \mathbb{P}(f(X) = 0) = \sum_{\{x | f(x) = 0\}} p_X(x) = p_X(5) = \frac{1}{9} \\
1 &\mapsto p_Y(1) = \mathbb{P}(f(X) = 1) = \sum_{\{x | f(x) = 1\}} p_X(x) = p_X(4) + p_X(6) = \frac{2}{9} \\
2 &\mapsto p_Y(2) = \mathbb{P}(f(X) = 2) = \sum_{\{x | f(x) = 2\}} p_X(x) = p_X(3) + p_X(7) = \frac{2}{9} \\
3 &\mapsto p_Y(3) = \mathbb{P}(f(X) = 3) = \sum_{\{x | f(x) = 3\}} p_X(x) = p_X(2) + p_X(8) = \frac{2}{9} \\
4 &\mapsto p_Y(4) = \mathbb{P}(f(X) = 4) = \sum_{\{x | f(x) = 4\}} p_X(x) = p_X(1) + p_X(9) = \frac{2}{9}
\end{align*} \quad (6)$$
Random variable transformations

- Transformations of discrete random variables
- **Direct calculation for continuous random variables**
- The probability integral transform
- The univariate probability density function transform
- The multivariate probability density function transform
- Linear combinations of random variables
- Combinations and transformations of Gaussian variables
Theorem (Direct calculation for continuous random variables)

Let X be a continuous random variable with PDF p_X and let $Y = f(X)$ for some function f on the outcome space of X. Then the CDF of the random variable Y is given by

$$p_Y : \mathbb{R} \to [0, 1], y \mapsto p_Y(y) := \mathbb{P}(Y \leq y) = \mathbb{P}(f(X) \leq y) = \int_{\{x | f(x) \leq y\}} p_X(x) \, dx. \quad (7)$$

If Y is a continuous random variable, then its PDF can be obtained as

$$p_Y : \mathbb{R} \to \mathbb{R}_{\geq 0}, y \mapsto p_Y(y) = \frac{d}{dy} P_Y(y). \quad (8)$$
Direct calculation for continuous random variables

Example (Continuous uniform distribution)

Let X be a continuous random variable with probability density function

$$p : \mathbb{R} \to \mathbb{R}_{\geq 0}, x \mapsto p(x) := \begin{cases} \frac{1}{b-a} & x \in [a, b] \\ 0 & x \notin [a, b]. \end{cases} \quad (9)$$

Then X is said to be distributed according to a \textit{continuous uniform distribution} with parameters a and b, for which we write $X \sim U(a, b)$. We abbreviate the PDF of a continuous uniform random variable by

$$U(x; a, b) := \frac{1}{b-a}. \quad (10)$$

Note that the PDF and CDF of $X \sim U(0, 1)$ are given by

$$p_X : \mathbb{R} \to \mathbb{R}_{\geq 0}, x \mapsto p_X(x) = \begin{cases} 0, & x < 0 \\ 1, & 0 \leq x \leq 1 \\ 0, & x > 1. \end{cases} \quad P_X : \mathbb{R} \to \mathbb{R}_{\geq 0}, x \mapsto P_X(x) := \begin{cases} 0, & x < 0 \\ x, & 0 \leq x \leq 1 \\ 1, & x > 1. \end{cases} \quad (11)$$

respectively
Direct calculation for continuous random variables

Example (Direct calculation for a continuous random variable)

Let X have the uniform distribution on the interval $[-1, 1]$, i.e. X has PDF p_X with

$$p_X : [-1, 1] \to \mathbb{R}_{\geq 0}, x \mapsto p_X(x) = \frac{1}{2}. \quad (12)$$

Let $Y = f(X)$ with

$$f : [-1, 1] \to [0, 1], x \mapsto f(x) := x^2. \quad (13)$$

Then the CDF of Y evaluates to

$$P_Y : [0, 1] \to [0, 1], y \mapsto P_X(Y) :=$$

$$= \mathbb{P}(Y \leq y) = \mathbb{P}(X^2 \leq y) = \mathbb{P}
\left(-y^{1/2} \leq X \leq y^{1/2}\right) = \mathbb{P}
\left(X \in [-y^{1/2}, y^{1/2}]\right)$$

$$= \int_{-y^{1/2}}^{y^{1/2}} p_X(x) \, dx = \int_{-y^{1/2}}^{y^{1/2}} \frac{1}{2} \, dx = \frac{1}{2} \int_{-y^{1/2}}^{y^{1/2}} 1 \, dx = \frac{1}{2} \left[x \right]^{y^{1/2}}_{-y^{1/2}}$$

$$= \frac{1}{2} \left(y^{1/2} - (-y^{1/2}) \right) = \frac{1}{2} \left(2y^{1/2} \right) = y^{1/2}. \quad (14)$$

Moreover, for $y \in]0, 1[$, the PDF of Y evaluates to

$$p_Y :]0, 1[\to \mathbb{R}_{\geq 0}, y \mapsto p_Y(y) = \frac{d}{dy} P_Y(y) = \frac{1}{2} y^{-1/2}. \quad (15)$$

Random variable transformations

- Transformations of discrete random variables
- Direct calculation for continuous random variables
- The probability integral transform
- The univariate probability density function transform
- The multivariate probability density function transform
- Linear combinations of random variables
- Combinations and transformations of Gaussian variables
Theorem (The probability integral transform)

Let X be a continuous random variable with CDF P_X and let

$$Y = P_X(X)$$ \hspace{1cm} (16)$$

be the *probability integral transform*. Then the distribution of Y is the continuous uniform distribution on the interval $[0, 1]$, $Y \sim U(0, 1)$.

Similarly, let Y have the uniform distribution on the interval $[0, 1]$ and let P_X^{-1} be the inverse of a continuous CDF P_X. Then

$$X = P_X^{-1}(Y)$$ \hspace{1cm} (17)$$

has CDF P_X.

Remarks

• Pseudo-random number generators of samples from the uniform distribution can be used to generate samples from arbitrary distributions.

• Let Y have the uniform distribution on $[0, 1]$ and let P_X^{-1} denote an inverse CDF. Then $X := P_X^{-1}(Y)$ has CDF P_X.

• Equivalently, let $Y_1, ..., Y_n \sim U(0, 1)$. Then $P_X^{-1}(Y_1), ..., P_X^{-1}(Y_n)$ will appear to form an i.i.d. sample from X.
The probability integral transform

Proof

We first note that for a continuous variable X with P_X, the quantile function of X corresponds to the inverse function of P_X, which we denote by P_X^{-1}. We next note that because P_X is a CDF, we have $0 \leq P_X(x) \leq 1$ for $x \in \mathbb{R}$. Thus, $P(Y < 0) = P(Y > 1) = 0$ and $P(Y \leq 1) = 1 - P(Y > 1) = 1$. We next consider the CDF P_Y of Y. We have

$$P_Y(y) = P(Y \leq y) = P(P_X(X) \leq y) = P\left(P_X^{-1}(P_X(X)) \leq P_X^{-1}(y)\right) = P\left(X \leq P_X^{-1}(y)\right) = P_X\left(P_X^{-1}(y)\right) = y.$$

We have thus seen that

$$P_Y : \mathbb{R} \rightarrow \mathbb{R}_{\geq 0} y \mapsto P_Y(y) := \begin{cases} 0, & y < 0 \\ y, & 0 \leq y \leq 1 \\ 1, & y > 1. \end{cases}$$

Thus, $Y \sim U(0, 1)$. Finally, with

$$Y = P_X(X) \iff P_X^{-1}(Y) = P_X^{-1}(P_X(X)) \iff X = P_X^{-1}(Y)$$

the second part of the theorem follows immediately. \qed
Random variable transformations

- Transformations of discrete random variables
- Direct calculation for continuous random variables
- The probability integral transform
- The univariate probability density function transform
- The multivariate probability density function transform
- Linear combinations of random variables
- Combinations and transformations of Gaussian variables
Theorem (The univariate probability density function transform)

Let X be a random variable with PDF p_X and for which $\mathbb{P}(\{a, b\}) = 1$, where a and/or b are either finite or infinite. Let $Y = f(X)$, where f is differentiable and bijective for $\{a, b\}$. Let $f(\{a, b\}$ be the image of $\{a, b\}$ under f. Finally, let $f^{-1}(y)$ denote the inverse of $f(x)$ for $y \in f(\{a, b\})$ and let $f'(x)$ denote the first derivative of f at x.

Then the PDF of Y is given by

$$p_Y : \mathbb{R} \to \mathbb{R}_{\geq 0}, y \mapsto p_Y(y) := \begin{cases} \frac{1}{|f'(f^{-1}(y))|} p_X(f^{-1}(y)) & \text{for } y \in f(\{a, b\}) \\ 0 & \text{for } y \in \mathbb{R} \setminus f(\{a, b\}). \end{cases}$$ \hspace{1cm} (21)
The univariate PDF transform

Proof
We first note that because f is a differentiable bijective function on the open interval $]a, b[$ it is either strictly increasing or strictly decreasing. Assume first that f is increasing on $]a, b[$. Then f^{-1} is also increasing for all $y \in f(]a, b[)$ and

$$P_Y(y) = \mathbb{P}(Y \leq y) = \mathbb{P}(f(X) \leq y) = \mathbb{P}\left(f^{-1}(f(X)) \leq f^{-1}(y)\right) = \mathbb{P}\left(X \leq f^{-1}(y)\right) = P_X\left(f^{-1}(y)\right). \tag{22}$$

P_Y is thus differentiable at all y where both f^{-1} and P_X is differentiable at $f^{-1}(y)$. With the chain rule of differentiation and the inverse function theorem $(f^{-1}(x))' = 1/f'(f^{-1}(x))$, it thus follows that the PDF p_Y evaluates to

$$p_Y(y) = \frac{d}{dy} P_Y(y) = \frac{d}{dy} P_X\left(f^{-1}(y)\right) = p_X\left(f^{-1}(y)\right) \frac{d}{dy} f^{-1}(y) = \frac{1}{f'(f^{-1}(y))} p_X\left(f^{-1}(y)\right), \tag{23}$$

Because f^{-1} is increasing, $d/dy(f^{-1}(y))$ is positive, and the theorem holds. Similarly, if f is decreasing on $]a, b[$, then f^{-1} is also decreasing for all $y \in f(]a, b[)$ and for each $y \in f(]a, b[)$ and

$$P_Y(y) = \mathbb{P}(f(X) \leq y) = \mathbb{P}\left(f^{-1}(f(X)) \geq f^{-1}(y)\right) = \mathbb{P}\left(X \geq f^{-1}(y)\right) = 1 - P_X\left(f^{-1}(y)\right), \tag{24}$$

With the chain rule of differentiation and the inverse function theorem, it thus follows that the PDF p_Y evaluates to

$$p_Y(y) = \frac{d}{dy}(1-P_Y(y)) = -\frac{d}{dy} P_X\left(f^{-1}(y)\right) = -p_X\left(f^{-1}(y)\right) \frac{d}{dy} f^{-1}(y) = -\frac{1}{f'(f^{-1}(y))} p_X\left(f^{-1}(y)\right). \tag{25}$$

Since f^{-1} is strictly decreasing, $d/dy(f^{-1}(y))$ is negative, such that $-d/dy(f^{-1}(y))$ equals $|d/dy(f^{-1}(y))|$ and the theorem holds.

\[\square\]
Theorem (The univariate PDF transform for linear functions)

Let X be a random variable with PDF p_X and let $Y = f(X)$ with

$$f(x) := ax + b \text{ for } a \neq 0.$$ (26)

Then the PDF of Y is given by

$$p_Y : \mathbb{R} \to \mathbb{R}_{\geq 0}, y \mapsto p_Y(y) := \frac{1}{|a|} p_X \left(\frac{y - b}{a} \right).$$ (27)
The univariate PDF transform

Proof

We first note that

\[f^{-1} : \mathbb{R} \to \mathbb{R}, y \mapsto f^{-1}(y) = \frac{y - b}{a} \]

(28)

because then \(f \circ f^{-1} = \text{id}_\mathbb{R} \) as

\[f(f^{-1}(x)) = a \left(\frac{x - b}{a} \right) + b = x - b + b = x \] for all \(x \in \mathbb{R} \)

(29)

We next note that

\[f' : \mathbb{R} \to \mathbb{R}, x \mapsto f'(x) = \frac{d}{dx}(ax + b) = a. \]

(30)

We thus have

\[p_Y : \mathbb{R} \to \mathbb{R}_{\geq 0}, y \mapsto p_Y(y) = \frac{1}{|f'(f^{-1}(y))|} p_X(f^{-1}(y)) = \frac{1}{|a|} p_X \left(\frac{y - b}{a} \right). \]

(31)

\[\Box \]
The univariate PDF transform

Example (Linear transformation of a standard normal variable)

Let $X \sim N(0, 1)$ and $Y = f(X)$ with $f(x) := ax + b$. Then $Y \sim N(b, a^2)$.

Proof

We first note that $f^{-1}(y) = \frac{y-b}{a}$ and $f'(x) = a$. With the univariate PDF transform for linear functions, we then have for the PDF of Y

$$p_Y(y) = \frac{1}{|a|} N \left(\frac{y-b}{a}; 0, 1 \right)$$

$$= \frac{1}{|a|} \frac{1}{\sqrt{2\pi}} \exp \left(-\frac{1}{2} \left(\frac{y-b}{a} \right)^2 \right)$$

$$= \frac{1}{\sqrt{a^2}} \frac{1}{\sqrt{2\pi}} \exp \left(-\frac{1}{2a^2} (y-b)^2 \right)$$

$$= \frac{1}{\sqrt{2\pi a^2}} \exp \left(-\frac{1}{2a^2} (y-b)^2 \right)$$

$$= N \left(y; b, a^2 \right)$$

and thus $Y \sim N \left(b, a^2 \right)$.

□
Example (Z-transformation)

Let \(X \sim N(\mu, \sigma^2) \) and \(Y = f(X) \) with \(f(x) := \frac{x - \mu}{\sigma} \). Then \(Y \sim N(0, 1) \).

Proof

We first note that \(f^{-1}(y) = \sigma y + \mu \) and \(f'(x) = \frac{1}{\sigma} \). With the univariate PDF transform for linear functions, we then have for the PDF of \(Y \)

\[
p_Y(y) = \frac{1}{|1/\sigma|} N \left(\sigma y + \mu; \mu, \sigma^2 \right)
= \frac{1}{1/\sqrt{\sigma^2}} \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left(-\frac{1}{2\sigma^2} (\sigma y + \mu - \mu)^2 \right)
= \frac{\sqrt{\sigma^2}}{\sqrt{2\pi\sigma^2}} \exp \left(-\frac{1}{2\sigma^2} \sigma^2 y^2 \right)
= \frac{1}{\sqrt{2\pi}} \exp \left(-\frac{1}{2} y^2 \right)
= N(y; 0, 1)
\]

and thus \(Y \sim N(0, 1) \).\(\square \)
Random variable transformations

• Transformations of discrete random variables
• Direct calculation for continuous random variables
• The probability integral transform
• The univariate probability density function transform
• The multivariate probability density function transform
• Linear combinations of random variables
• Combinations and transformations of Gaussian variables
The multivariate PDF transform

Theorem (The multivariate probability density function transform)

Let X be an n-dimensional random vector with PDF p_X and let $Y = f(X)$ be an n-dimensional random vector, where $f : \mathbb{R}^n \to \mathbb{R}^n$ is differentiable and bijective. Let $f^{-1} : \mathbb{R}^n \to \mathbb{R}^n$ denote the inverse of f. Let further

$$
J^f(x) = \left(\frac{\partial}{\partial x_j} f_i(x) \right)_{i,j=1,\ldots,n} \in \mathbb{R}^{n \times n} \tag{34}
$$

denote the Jacobian of f at $x \in \mathbb{R}$, let $|J^f(x)|$ denote its determinant, and assume that $|J^f(x)| \neq 0$ for all $x \in \mathbb{R}^n$. Then the PDF of Y is given by

$$
p_Y : \mathbb{R}^n \to \mathbb{R}_{\geq 0}, y \mapsto p_Y(y) :=
\begin{cases}
1 & \text{for } y \in f(\mathbb{R}^n) \\
\frac{1}{|J^f(f^{-1}(y))|} p_X(f^{-1}(y)) & \text{for } y \in \mathbb{R}^n \setminus f(\mathbb{R}^n).
\end{cases} \tag{35}
$$

Remarks

- A straightforward generalization of the univariate case.
- Proof omitted.
The multivariate PDF transform

Theorem (The multivariate PDF transform for linear functions)

Let X be a random vector with PDF p_X. Let $Y = f(X)$ with

$$f(x) = Ax, \ A \in \mathbb{R}^{n \times n} \text{ and nonsingular.} \tag{36}$$

Then the PDF of Y is given by

$$p_Y : \mathbb{R}^n \rightarrow \mathbb{R}_{\geq 0}y \mapsto p_Y(y) = \frac{1}{|A|}p_X(A^{-1}y) \tag{37}$$

where $|A|$ and A^{-1} denote the determinant and the inverse of A, respectively.

Remarks

- A straight-forward application the multivariate PDF transform theorem.
- Central for classical and Bayesian linear Gaussian models.
The multivariate PDF transform

Proof

We first show that

\[f^{-1} : \mathbb{R}^n \to \mathbb{R}^n, y \mapsto f^{-1}(y) := A^{-1} y. \]

(38)

To this end, we note that

\[f^{-1}(f(x)) = A^{-1} Ax = x = \text{id}_{\mathbb{R}^n}(x). \]

(39)

We next show that

\[J^f \left(f^{-1}(y) \right) = A. \]

(40)

To this end, we first note that

\[f_i(x) = \sum_{j=1}^{n} a_{ij} x_j. \]

(41)

Thus

\[J^f(x) = \left(\frac{\partial}{\partial x_j} f_i(x) \right)_{i,j=1,\ldots,n} \]

(42)

\[= \left(\sum_{j=1}^{n} \frac{\partial}{\partial x_j} a_{ij} x_j \right)_{i,j=1,\ldots,n} \]

(43)

\[= (a_{ij})_{i,j=1,\ldots,n} \]

(44)

\[= A \in \mathbb{R}^{n \times n}, \]

(45)

which is constant.

\[\square \]
The multivariate PDF transform

Example (Linear transformations of multivariate Gaussians)
If

- X is a random vector distributed according to an n-variate Gaussian distribution with probability density function $N(x; \mu_x, \Sigma_x)$ for $x, \mu_x \in \mathbb{R}^n, \Sigma_x \in \mathbb{R}^{n \times n}$ p.d., and
- $A \in \mathbb{R}^{n \times n}$ is a matrix of full column-rank

then the random vector

$$ Y := AX \tag{46} $$

is distributed according to an n-variate Gaussian distribution with probability density function $N(y; \mu_y, \Sigma_y)$ with $y, \mu_y \in \mathbb{R}^m$ and $\Sigma_y \in \mathbb{R}^{n \times n}$, and in particular

$$ \mu_y := A\mu_x \quad \text{and} \quad \Sigma_y := A\Sigma_x A^T. \tag{47} $$
The multivariate PDF transform

Example (Linear transformations of multivariate Gaussians cont.)

Proof
With the multivariate PDF transform theorem for linear functions, we first note that we have for the normalization term

\[|A|^{-1} (2\pi)^{-\frac{n}{2}} |\Sigma|^{-\frac{1}{2}} = |A|^{-\frac{1}{2}} |\Sigma|^{-\frac{1}{2}} |A^T|^{-\frac{1}{2}} = |A\Sigma A^T|^{-\frac{1}{2}} \]

(48)

We next note that for the the argument of the exponential term, we have

\[-\frac{1}{2} (A^{-1}y - \mu)^T \Sigma^{-1} (A^{-1}y - \mu) \]

\[= -\frac{1}{2} (yA^{-1} \Sigma^{-1} A^{-1} y - 2yA^{-1} \Sigma^{-1} \mu + \mu^T \Sigma^{-1} \mu) \]

\[= -\frac{1}{2} (yA^{-1} \Sigma^{-1} A^{-1} y - 2yA^{-1} \Sigma^{-1} A^{-1} A\mu + \mu^T \Sigma^{-1} \mu) \]

(49)

\[= -\frac{1}{2} (yA^{-1} \Sigma^{-1} A^{-1} y - 2yA^{-1} \Sigma^{-1} A^{-1} A\mu + (A^{-1} A)^T \mu^T \Sigma^{-1} A^{-1} A\mu) \]

\[= -\frac{1}{2} (y - A\mu)^T (A\Sigma A^T)^{-1} (y - A\mu), \]

which completes the proof. \(\square \)
Random variable transformations

- Transformations of discrete random variables
- Direct calculation for continuous random variables
- The probability integral transform
- The univariate probability density function transform
- The multivariate probability density function transform
- **Linear combinations of random variables**
- Combinations and transformations of Gaussian variables
Linear combinations of random variables

Theorem (Convolution of continuous random variables)

Let X and Y be two independent random variable with PDFs p_X and p_Y, respectively. Let

$$Z := X + Y$$

be the sum of X and Y. Then a PDF of Z is given by the convolution of the PDFs of X and Y,

$$p_z : \mathbb{R} \to \mathbb{R}_{\geq 0}, z \mapsto p_Z(z) = (p_X * p_Y)(z),$$

defined as

$$(p_X * p_Y)(z) := \int_{-\infty}^{\infty} p_X(z - \xi)p_Y(\xi) \, d\xi = \int_{-\infty}^{\infty} p_X(\xi)p_Y(z - \xi) \, d\xi.$$

Remark

- For a proof, see DeGroot and Schervish (2012, p. 178 - 179).
- Fundamental for classical parametric confidence intervals and statistical testing.
- Fundamental for nonparametric kernel density estimation.
Random variable transformations

- Transformations of discrete random variables
- Direct calculation for continuous random variables
- The probability integral transform
- The univariate probability density function transform
- The multivariate probability density function transform
- Linear combinations of random variables
- Combinations and transformations of Gaussian variables
Theorem (Distribution of Gaussian sample means and variances)

Let \(X_1, ..., X_n \sim N(\mu, \sigma^2) \) and let

\[
\bar{X} := \frac{1}{n} \sum_{i=1}^{n} X_i \quad \text{and} \quad S^2 := \frac{1}{n - 1} \sum_{i=1}^{n} (X_i - \bar{X})^2
\]

(53)

denote the sample mean and sample variance of \(X_1, ..., X_n \). Then

1. \(\bar{X} \) and \(S^2 \) are independent,
2. \(\bar{X} \sim N(\mu, \sigma^2/n) \), and
3. \((n - 1)S^2/\sigma^2 \sim \chi^2(n - 1) \).

Remark

- For a proof, see Casella and Berger (2002, pp. 218 - 219)
Combinations and transformations of Gaussians

Example (Chi-squared distribution)

Let X be a continuous random variable with probability density function

$$p : \mathbb{R}_{>0} \rightarrow \mathbb{R}_{>0}, x \mapsto p(x) := \frac{1}{\Gamma(d/2)2^{d/2}} x^{(d/2)-1} \exp \left(-\frac{1}{2}x \right),$$

where Γ denotes the Gamma function. Then X is said to be distributed according to a \textit{chi-squared distribution} with d degrees of freedom, for which we write $X \sim \chi^2(d)$. We abbreviate the PDF of a chi-squared random variable by

$$\chi^2(x; d) := \frac{1}{\Gamma(d/2)2^{d/2}} x^{(d/2)-1} \exp \left(-\frac{1}{2}x \right).$$
Combinations and transformations of Gaussians

Theorem (Properties of chi-squared random variables)

1. If $Z \sim N(0, 1)$, then $Z^2 \sim \chi^2(1)$.

2. If X_1, \ldots, X_n are independent chi-squared random variables with degrees of freedom d_1, \ldots, d_n, then $\sum_{i=1}^{n} X_i^2 \sim \chi^2 \left(\sum_{i=1}^{n} d_i \right)$

Remarks

- A chi-squared variable is a squared standard normal variable.
- The sum of independent chi-squared variables has a chi-squared distribution with degrees of freedom corresponding to the sum of the individual degrees of freedom.
- For a proof, see Casella and Berger (2002, p. 219)
Combinations and transformations of Gaussians

Definition (t-distribution)

Let $X_1, \ldots, X_n \sim N(\mu, \sigma^2)$ and let

$$T := \sqrt{n} \frac{\bar{X} - \mu}{S}, \text{ where } S := \sqrt{S^2},$$

denote the T-statistic. Then $T \sim T(n-1)$, i.e. T has a t distribution with $n-1$ degrees of freedom. Equivalently, let X be a continuous random variable with probability density function

$$p : \mathbb{R} \to \mathbb{R}_{\geq 0}, x \mapsto p(x) := \frac{\Gamma \left(\frac{d+1}{2} \right)}{\Gamma \left(\frac{d}{2} \right)} \frac{1}{(d\pi)^{1/2}} \left(1 + \frac{x^2}{d} \right)^{-1} \left(\frac{d+1}{2} \right).$$

Then X is said to be distributed according to a t distribution with d degrees of freedom, for which we write $X \sim T(d)$. We abbreviate the PDF of a t distribution with d degrees of freedom by

$$t(t; d) := \frac{\Gamma \left(\frac{d+1}{2} \right)}{\Gamma \left(\frac{d}{2} \right)} \frac{1}{(d\pi)^{1/2}} \left(1 + \frac{x^2}{d} \right)^{-1} \left(\frac{d+1}{2} \right).$$

Remark

- For a proof, see Casella and Berger (2002, p. 223 - 224)