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Many of our decisions involve uncertainty about the potential out-
comes of choices. In some of these situations the probabilities of outcomes 
are known (or approximated), such as in medical decisions about treat-
ment options (e.g., cancer therapy). In other situations outcome probabili-
ties are unknown and we have to learn about the likelihood with which 
a certain action leads to a desired outcome. Such situations may involve 
high-level financial decisions such as investments in stocks or bonds, but 
they also apply to decisions during grocery shopping when having to 
choose between different varieties of apples.

Stereotypes about older adults suggest that they might be more risk 
avoidant and conservative decision makers than younger adults (for 
a review see Mather, 2006; Mather et al., 2012). Such behavior might be 
adaptive in situations in which the decision context favors risk-avoidant 
choices, but may lead to suboptimal decisions in situations that favor 
risky choice. Recent theoretical ideas suggest that decision making deficits 
may become obvious once age-related decline in fluid cognitive functions 
(e.g., processing speed or reasoning abilities) offsets relative increase or 
stability in more crystalized abilities (learned or acculturated knowledge) 
(Agarwal, Driscoll, Gabaix, & Laibson, 2009; Samanez-Larkin, 2013).



4. A NEURO-COMPUTATIONAL APPROACH62

1. NEUROBIOLOGICAL MECHANISMS

Results from empirical studies on age differences in decision making 
under uncertainty show mixed results regarding age-related changes in risky-
choice behavior. Some studies report age-related deficits in decision making, 
whereas others found no significant differences between younger and older 
adults (Mata, Josef, Samanez-Larkin, & Hertwig, 2011; Mather et al., 2012). 
Current meta-analytic data point to a dissociation between studies that focus 
on explicitly stated probabilities and studies in which the outcome of an 
option has to be learned (Mata et al., 2011). That is, the current literature sug-
gests that age-related deficits in decision making under uncertainty are pri-
marily due to impairments in learning probabilistic reward structures.

Building on this dissociation, in the current chapter we will concentrate 
on the psychological and neurophysiological underpinnings of age-related 
deficits in decision making tasks in which the expected value of choice 
options has to be learned. We will outline the relationship between age-
related changes in the dopamine (DA) system as well as functional changes 
in subcortical and prefrontal networks involved in making decisions from 
experience. Furthermore, we will focus on potential links between neuro-
computational theories of reinforcement learning and age-related deficits 
in experience-driven decision making. Finally, we will conclude with a 
summary of the current research, identify gaps that need to be filled in the 
future, and provide evidence for potential targets for interventions that aim 
at improving learning and decision making abilities in old age.

AGE-RELATED DECLINE IN THE DOPAMINE SYSTEM

We start the chapter with a brief review of age-related changes in 
the dopamine system and their impact on learning and decision mak-
ing functions in older adults. Age-related changes in the dopamine sys-
tem have been observed across various areas in the brain. For example, 
positron emission tomography (PET) and single-photon emission com-
puted tomography studies suggest that aging is associated with a decline 
in pre- and postsynaptic markers of DA D1, and D2 receptor density is 
reduced in older compared to younger adults. Age-related reductions 
in D1 receptor density (about 7% per decade) have been reported in 
the basal ganglia (caudate nucleus and putamen) (Bäckman et al., 2009; 
MacDonald, Karlsson, Rieckmann, Nyberg, & Bäckmann, 2012; Wang 
et al., 1998). Similar findings have been reported for D2 receptor density 
in the striatum (Volkow et al., 2000; Volkow, Wang, et al., 1998) and the 
prefrontal cortex (Volkow et al., 2000). Moreover, there is evidence for 
an association between age-related decline in D2 receptors in the pre-
frontal cortex and metabolism in the prefrontal and cingulate cortex as 
well as correlations between D2 receptor decline and performance defi-
cits in the measures of executive control (the Wisconsin Card Sort Test)  
(Volkow, Gur, et al., 1998; Volkow et al., 2000). Presynaptic markers of DA 
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function also show substantial decline with age. The binding potential 
for the DA transporter in the striatum is significantly lower in older than 
younger adults (Erixon-Lindroth et al., 2005; Troiano et al., 2010; Wong, 
Müller, Kuwabara, Studenski, & Bohnen, 2012). Although these results 
point to a substantial negative relationship between age and DA function, 
it should be noted that so far, there are no longitudinal assessments of 
age-related changes in DA neurotransmission. Therefore, we lack precise 
estimates and a detailed understanding of age-related change in pre- and 
postsynaptic measures of the DA system as well as the relation between 
baseline DA levels, age-related change, and individual differences in cog-
nitive performance. Furthermore, so far it has not been established whether 
different aspects of the DA system are differentially affected by age.

Effects of Age-Related Dopamine Decline on Cognitive Function

Age-related decline in DA function has been associated with deficits in 
various cognitive abilities (Braver & Barch, 2002; Bäckman, Lindenberger, 
Li, & Nyberg, 2010; Li, Lindenberger, & Sikström, 2001). In particular, stud-
ies point to an association between decline in D1 receptor density in the stri-
atum and working memory (WM) (Braskie et al., 2008; Bäckman et al., 2009). 
This finding is consistent with theoretical ideas that suggest that deficits in 
the updating of WM representations in older adults are due to reduced pha-
sic DA responses that are projected to the prefrontal cortex (Braver & Barch, 
2002; Braver et al., 2001). The so-called gating theory suggests that mid-
brain DA signals regulate the access of new information to WM (Braver &  
Cohen, 2000). More specifically, the theory holds that DA prediction error 
(Pe) signals are used to learn when the WM gate should be opened in order 
to allow new information to access WM and to guide behavior. Consistent 
with the theory, results of a behavioral study point to specific deficits in 
older adults when they have to update WM context representations (Braver 
et al., 2001). These deficits may result from reduced dopaminergic Pe signal-
ing during WM gating in the dorsolateral prefrontal cortex. Results from 
a PET study on WM training in younger adults show that WM updating 
training induces transient DA release in the striatum, which seems in line 
with the predictions of the gating theory (Bäckman et al., 2011). To summa-
rize, based on these findings it is tempting to assume that reductions in DA 
phasic signaling with age lead to a deficient updating of WM representa-
tions and by this affect multiple cognitive operations in older adults that 
rely on short-term storage and updating of information.

Effects of Age-Related Dopamine Decline on Learning  
and Decision Making from Experience

Compared to associations between DA and cognitive measures, rela-
tionships between age differences in motivational functions such as 
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reward-based learning and decision making and DA are less well estab-
lished. This is somewhat surprising, given the rapid progress of research 
on the involvement of the DA system in reward processing, reinforcement 
learning, and decision making in younger adults. Moreover, in contrast 
to cognitive functions, there are relatively detailed mechanistic models 
of the role of DA (and other neurotransmitters such as norepinephrine) 
in reinforcement learning and decision making (Aston-Jones & Cohen, 
2005; Montague, Hyman, & Cohen, 2004). One advantage of these neuro-
computational theories is that they allow us to be more specific regarding 
age-related changes in the underlying neural mechanisms. For example, 
reductions in phasic dopaminergic learning signals from the ventral teg-
mental area should lead to deficits in the updating of reward value rep-
resentations and to behavioral impairments in reinforcement learning 
(Eppinger, Haemmerer, & Li, 2011; Nieuwenhuis et al., 2002). Empirical 
findings support these results, showing age-related behavioral deficits 
in reinforcement learning, reduced learning effects in reward-related 
evoked potential (ERP) components in older adults, reduced prediction 
error signals in the ventral striatum in the elderly as well as alterations 
in the structural integrity of the midbrain (Chowdhury, Guitart-Masip, 
Lambert, Dolan, & Düzel, 2013; Chowdury et al., 2013; Eppinger, Kray, 
Mock, & Mecklinger, 2008; Eppinger, Schuck, Nystrom, & Cohen, 2013; 
Samanez-Larkin, Levens, Perry, Dougherty, & Knutson, 2012; Schott et al., 
2007). Moreover, a combined PET and neuroimaging (fMRI) study in 
younger and older adults showed age-related changes in the relationship 
between midbrain DA synthesis and reward-related fMRI activity (Dreher,  
Meyer-Lindenberg, Kohn, & Berman, 2008).

Work on the direct relationship between age-related changes in DA 
neuromodulation and age differences in decision making is scarce. How-
ever, findings in younger adults revealed an association between reduced 
DA D2 autoreceptor availability in the midbrain, increased stimu-
lated DA release in the ventral striatum, and enhanced trait impulsivity  
(Buckholtz et al., 2010). That is, these findings suggest that in younger adults, 
enhanced DA release in the ventral striatum (as induced by amphetamine) 
is associated with greater impulsivity. Based on these findings it could be 
argued that reduced DA release in the ventral striatum in older adults may 
result in less impulsive behavior (Eppinger, Nystrom, & Cohen, 2012).

There are many open questions in this emerging field of research. For 
example, it is unclear how aging affects tonic versus phasic activity modes 
of DA (and their interaction) and what the implications of these effects 
are for learning and decision making. Another issue that merits further 
research is the relationship between age-related changes in variability 
of DA activity and age-related deficits in learning and decision making  
(Garrett et al., 2013). For example, findings by Samanez-Larkin and  
colleagues (2010) indicate that suboptimal financial decision making in 
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older adults is associated with increases in variability of fMRI activity in 
the ventral striatum. A more general question that emerges from this work 
is whether aging may lead to greater decision noise, that is, unstructured 
variance in choices and preferences in older adults, and whether these 
effects are reflected in increased intra-individual variability of neurophys-
iological measures (Li et al., 2001).

Taken together, there is strong evidence for age-related changes in dif-
ferent aspects of the DA system. These age differences in DA neuromodu-
lation seem to have profound effects on many cognitive and motivational 
functions. The ubiquity of these effects has lead to some degree of frustra-
tion among researchers, and to the notion that DA may be involved in 
almost every cognitive and motivational function. However, it should be 
noted that many previous approaches lacked a precise theory of the mech-
anism by which DA affects specific cognitive or motivational processes. 
Recent progress in computational approaches and combinations of mod-
eling and neuroimaging techniques will allow us to move on and develop 
mechanistic rather than descriptive theories of age-related changes in cog-
nitive and motivational functions.

AGE DIFFERENCES IN LEARNING FROM EXPERIENCE

As outlined nicely by Mata et al. (2011), age-related impairments in 
decisions from experience might result from an underlying deficit in learn-
ing the expected value of decision options. The purpose of the following 
paragraphs is to provide a link between age differences in decisions from 
experience and age-related changes in neurophysiological mechanisms of 
reinforcement learning. For the purpose of this chapter we will primarily 
focus on age differences in learning from uncertain (probabilistic) reward 
information as well as age-related changes in the neural systems involved 
in learning from experience. We will also visit the field of computational 
neuroscience to examine mechanistic ideas about age-related changes in 
learning and decision making from experience.

Findings from electrophysiological ERP studies suggest that older 
adults are impaired in learning from uncertain (probabilistic) reward, 
whereas age-related learning impairments are less pronounced when 
reward is deterministic (reward information is always reliable) (Eppinger 
et al., 2008; Pietschmann, Endrass, Czerwon, & Kathmann, 2011). Learning 
impairments in older adults are associated with deficits in error detection, 
as indicated by a reduced error-related negativity, an ERP component that 
is elicited by erroneous responses (Eppinger & Kray, 2011; Eppinger et al., 
2008; Herbert, Eppinger, & Kray, 2011; Pietschmann et al., 2011). Further-
more, older adults show less differentiated ERP responses to positive and 
negative feedback during learning, indicating that they have difficulties 
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in representing valence information (Eppinger et al., 2008; Herbert et al., 
2011). Taken together, these findings suggest that older adults may have 
deficits in learning the expected value of reward if contingencies between 
states, actions, and rewards are probabilistic (Eppinger et al., 2011; Häm-
merer & Eppinger, 2012).

Recent findings from fMRI studies show that these learning impair-
ments might be due to age differences in dopaminergic teaching signals 
that are projected from the midbrain (ventral tegmental area and substantia 
nigra) to the ventral striatum and ventromedial prefrontal cortex (vmPFC)  
(Chowdury et al., 2013; Eppinger, Schuck, et al., 2013; Samanez-Larkin,  
Worthy, Mata, McClure, & Knutson, 2014). These learning signals reflect dis-
crepancies between actual and expected outcomes (prediction errors) and can 
be captured using reinforcement learning models (Niv & Schoenbaum, 2008). 
In environments that involve a continuous updating of predictions about the 
expected value of a stimulus or action, these models use the temporal differ-
ence (TD) learning algorithm to formalize learning (Sutton & Barto, 1998).

Temporal Difference Learning

The core idea of TD learning is that, during learning, the expected 
value of a stimulus or state is continuously updated as a func-
tion of the difference between the sum of the current reward and 
the future value prediction minus the current value prediction  
(see Figure 1 and Eqn (1)). For example during grocery shopping one 
might encounter a new product (for example, a new variety of apples). 
Before eating the apple, the prediction regarding the taste might be neu-
tral or slightly positive (otherwise one would not have bought it). Assume 
that the apple tastes extraordinarily good. That is, the taste is better than 
predicted. This should be reflected in a strong positive Pe (see Figure 1).  
However, one moment later you might realize that the apple is not an 

FIGURE 1 Illustration and schematic picture of the temporal difference reinforcement 
learning algorithm.
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organic product (as you might have preferred). This would induce a nega-
tive Pe and reduce the expected value of the apple. According to rein-
forcement learning theory, the prediction error is used to continuously 
update value predictions. After repeated experience with the same vari-
ety of apples (that is, with learning), the value prediction gets more and 
more accurate.

More formally, according to the TD algorithm the prediction error δ(t) 
is defined as the immediate reward R(t) plus the predicted future value 
V(t + 1) minus the current value prediction V(t) (Eqn (1)):

 δ (t) = R (t) + γ · V (t + 1) − V (t) 

The Pe δ(t) is used to update the old value prediction (Eqn (2)):

 V (t)new = Vt (old) + α · δ (t) 

The (exponential) discount factor 0 < γ < 1 in Eqn (1) accounts for the 
fact that humans (and other animals) tend to discount the value of future 
reward. That is, more distant reward is perceived as less valuable (high 
discount rate) than more immediate reward. In the apples example above, 
assume that you would have to buy an apple today but can consume it 
only 2 days from now. The expected value of this apple (apart from being 
less fresh than today) is presumably lower than the value of an apple that 
could be consumed right away.

The learning rate 0 < α < 1 in Eqn (2) determines how much a specific 
event affects future value predictions. A learning rate close to 1 would sug-
gest that the most recent outcome has a strong effect on the value predic-
tion, whereas a small learning rate indicates that much experience has to 
accumulate to affect value predictions. In the apple example, a low learn-
ing rate in subject A would mean that new information (such as where the 
apple comes from or where it was bought) does not have much impact on 
the value prediction (e.g., because subject A does not care about this infor-
mation). In contrast, a high learning rate in subject B would mean that this 
information has a strong impact on value predictions (e.g., because subject 
B does care about the origin of the apple).

To summarize, a core feature of reinforcement learning theory is that 
reward prediction errors are used to learn (update) the expected future 
value associated with stimuli (states) and/or actions. Deficits in DA 
 phasic Pe signaling may lead to less differentiated reward representation 
in the vmPFC and therefore to impairments in reinforcement learning  
(Eppinger et al., 2011). In a recent study we used reinforcement learning 
modeling in combination with fMRI to investigate the effects of aging 
on approach and avoidance learning (Eppinger, Schuck, et al., 2013). 
Behavioral findings showed that older adults are impaired in learning 
from reward (when they have to choose actions that lead to reward), 
but not in avoidance learning (when they have to learn to avoid stimuli 
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that lead to negative outcomes) (see Eppinger, Schuck, et al., 2013). To  
examine whether we can explain age-related deficits in learning from 
reward based on the association between model parameters and neural 
activity, we examined correlations between Pe estimates and the blood 
oxygenation level-dependent (BOLD) signal. Results of this analysis 
showed that impairments in learning from reward in older adults were 
associated with reduced Pe signaling in two areas that receive strong pro-
jections from the dopamine system, the ventral striatum and the vmPFC. 
In contrast, as in the behavioral results, we found no evidence for age dif-
ferences in the correlations between prediction errors and BOLD activity 
during learning from negative feedback.

A study by Chowdury et al. (2013) revealed very similar results 
during probabilistic reinforcement learning. Moreover, using a phar-
macological intervention with the dopamine precursor l-DOPA, these 
authors could show that the Pe signals in the ventral striatum in the 
elderly could be partially restored by enhancing DA levels. That is, the 
results by Chowdury et al. (2013) point to a potential pharmacological 
intervention to improve learning and decision making abilities in old 
age. Taken together, these findings are nicely consistent with the idea 
that reduced dopaminergic signaling from the midbrain may lead to 
less differentiated reward representations in the vmPFC and to behav-
ioral impairments in learning.

However, although these interpretations are consistent with several 
previous theoretical accounts and empirical findings (Eppinger et al., 
2011; Hämmerer & Eppinger, 2012; Nieuwenhuis et al., 2002), it should 
be noted that the interactions between the midbrain DA system and the 
prefrontal cortex might be more complex than currently suggested. For 
example, electrophysiological data in monkeys indicate that the ventral 
striatum prediction error signal critically depends on intact projections 
from the vmPFC (Takahashi et al., 2011). That is, it could be that reduced 
Pe signals in the ventral striatum in older adults are not due to diminished 
DA projections, but rather due to deficits in vmPFC representations in the 
elderly. Support for this view comes from a study by Samanez-Larkin 
et al. (2012), which indicates that the diminished integrity of white matter 
pathways from the medial prefrontal cortex to the ventral striatum par-
tially mediates the association between age and reduced learning perfor-
mance in older adults.

Age Differences in Different Types of Reinforcement Learning

As stated above, our definition of decisions from experience refers to 
decision making tasks in which participants have to learn about the prob-
ability of outcomes in order to make optimal decisions that incorporate 
risk. It should be noted that this definition is agnostic with respect to 
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learning mechanisms involved. So far we have mostly addressed situa-
tions in which younger and older adults learn to choose actions based on 
past experience. This type of reinforcement learning is sometimes referred 
to as model-free learning, because it is purely experience driven and does 
not rely on a forward model of the environment. Model-free learning is 
powerful and computationally robust. However, it also has its limitations, 
because it relies on multiple repetitions of associations and tends to be 
inflexible and slow (Doll, Simon, & Daw, 2012; Gershman, Markman, & 
Otto, 2013). Thus, model-free learning and decision making mechanisms 
may fail in more complex situations in which contingencies in the world 
change and we have to rapidly adjust behavior.

For these situations we need adaptive decision mechanisms that allow us 
to anticipate the consequences of future actions and to choose the sequence of 
future actions that has the highest probability to lead to the desired goal (Doll 
et al., 2012). Current decision making theories refer to these mechanisms as 
model-based learning and decision making (Balleine & O’Doherty, 2010;  
Daw, Niv, & Dayan, 2005). The advantage of model-based mechanisms is that 
they allow us to rapidly and flexibly adjust behavior to changes in the envi-
ronment (such as changes in outcome probabilities). The downside is that 
they are computationally expensive because they involve a complete repre-
sentation of the decision space (all possible combinations of states, actions,  
and rewards in a given situation). In a recent behavioral study we investi-
gated the interplay of model-based and model-free decision making mecha-
nisms in younger and older adults using a two-stage Markov decision task 
(see Figure 2(A)). In the first stage of this task, participants have to choose 
between two options (the two airplanes in Figure 2(A)). Depending on their 
choice, they transition to either the second-stage options with light gray back-
ground (see Figure 2(A), right-hand side), or the second-stage options with 
dark gray background (see Figure 2(A), left-hand side). In the second stage, 
they have to make another decision between two options (the figures in the 
second stage). Subsequently, they receive feedback for their choice (either a 
reward of 10 Eurocents or no reward). Feedback for the second-stage options 
is probabilistic and changes over time (see Figure 2(A)). The idea of this task 
is that in order to reach a preferred (rewarded) state in the second stage, par-
ticipants have to engage in a strategic decision in the first stage. That is, they 
have to integrate model-free information about the reward probabilities in the 
second stage of the task with a model-based representation of the transition 
structure in the first stage of the task (see Figure 2(A) and (B)). Intuitively this 
means that in the second stage of the task, participants have to continuously 
learn which is the currently best option (model-free learning). However, in 
order to get the currently preferred stimulus in the first stage, they have to 
make a model-based decision, that is, they have to incorporate the transition 
probabilities into their decision. Thus, in order to get to the lower-right figure 
with light gray background in Figure 2(A) (second stage) one has to choose the 
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upper-right option in the first stage. However, given the probabilistic nature 
of the transition structure, from time to time one will also end up at the other 
two states (figures with dark gray background in Figure 2(A)). The critical 
dependent variable in this task is the choice behavior in the first stage when 
participants have to integrate their knowledge of the transition structure with 
model-free information about the currently best option in the second stage. 
Choice behavior in the first stage of this task was fit using a hybrid reinforce-
ment learning algorithm (Daw, Gershman, Seymour, Dayan, & Dolan, 2011; 
Eppinger, Walter, Heekeren, & Li, 2013; Wunderlich, Smittenaar, & Dolan, 
2012) (for a schematic depiction see Figure 2(B)). This algorithm assumes that 
choices in the first stage of the task are driven by a weighted combination 
of model-based reinforcement learning (QMB), which accounts for the transi-
tion structure, and model-free SARSA (λ) TD learning (QMF(1) and QMF(2)). The 
weighting of model-based versus model-free decision mechanisms is deter-
mined by the free parameter omega (Ω). If Ω approaches 0 behavior is model 

FIGURE 2 (A) Schematic picture of the two-stage Markov decision task. In the first stage 
of this task participants have to make a goal-directed decision that integrates knowledge of 
the transition structure with knowledge of the currently best option on the second stage. (B) 
A hybrid reinforcement learning algorithm is used to model choice behavior in the task. The 
model provides an estimate of the relative contribution of model-free and model-based deci-
sion mechanisms to behavior. (C) The behavioral results show a shift from model-based to 
model-free choice behavior in older compared to younger adults. Figure adapted with permis-
sion from Eppinger, Walter, et al. (2013).
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free, which is reflected in a main effect of reward. In contrast, an Ω value close 
to 1 indicates model-based choice behavior, which is reflected in an interac-
tion between transition structure and reward on the previous trial. Results 
show substantial age-related deficits in model-based behavior in older com-
pared to younger adults (Figure 2(C)). These deficits seem to be particularly 
pronounced in situations in which unexpected reward on the second stage 
indicates that the decision strategy on the first stage has to be adjusted. In 
these situations, older adults choose the suboptimal option, whereas younger 
adults engage in a strategic exploration of the decision space using their 
knowledge of the task transition structure. The neurophysiological mecha-
nisms that lead to these deficits in model-based behavior in older adults are 
not yet clear. Work in younger adults suggests that fronto-partial areas may 
play a critical role in learning model-based representations (Gläscher, Daw, 
Dayan, & O’Doherty, 2010; Lee, Shimojo, & O’Doherty, 2014). Consistent with 
these findings, recent results from our group suggest that deficits in the learn-
ing of task transition structures (that is, learning how to navigate in a task 
in order to reach a goal) are associated with a reduced recruitment of the 
lateral prefrontal cortex (Eppinger, Heekeren, & Li, 2013b). Taken together, 
the current data point to substantial deficits of older adults in model-based 
learning and decision making. These deficits may affect choice behavior in 
experiential decision making tasks, particularly in environments that involve 
nonstationary reward and transition structures.

CONCLUSIONS

We conclude with a brief summary of the psychological and neurobio-
logical processes underlying learning and decision making deficits and 
with a description of potential interventions to improve learning and deci-
sion making in older adults.

Most of our everyday decisions involve uncertainty about the poten-
tial outcomes. To reduce uncertainty we have to sample different options 
and associated rewards (different types of apples or different stocks or 
bonds for investment). Therefore, in decisions from experience we have to 
learn the outcome probability of an option. In this chapter we explored the 
psychological and neurophysiological underpinnings of learning impair-
ments, which are relevant for the understanding of age-related changes 
in decisions from experience. In particular, we focused on age-related 
changes in the neurocomputational mechanisms of reinforcement learn-
ing. Recent results in this emerging field of research suggest that age-
related impairments in learning of the expected utility of options might be 
due to a reduced updating of reward value representations in the vmPFC 
(Eppinger et al., 2011; Hämmerer & Eppinger, 2012). Whether these effects 
are due to reduced dopaminergic projections from the midbrain to the 
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ventral striatum or whether they result from a diminished representa-
tional capacity of the vmPFC in older adults (or both) is currently unclear 
(Eppinger, Schuck, et al., 2013). Thus, based on the current data it seems 
straightforward to link age-related deficits in decisions from experience to 
these impairments in model-free reinforcement learning. However, model-
free reinforcement learning tends to be relatively slow and inflexible, due 
to the large number of repetitions that needs to approximate the value 
of options. Therefore, it seems reasonable to assume that decisions from 
experience also involve faster and more flexible learning mechanisms that 
allow the decision maker to rapidly adjust behavior to changes in the envi-
ronment, such as changes in reward probabilities. Current decision theo-
ries assume that these learning mechanisms involve the representation of 
a forward model of the decision space that includes all possible combina-
tions of states, actions, and outcomes (Balleine & O’Doherty, 2010; Daw 
et al., 2005). The decision maker uses this model representation to choose 
the option that yields the highest long-term outcome in a given situation. 
Thus, these learning and decision making mechanisms provide the basis 
for flexible decisions. However, they also come at the cost of being compu-
tationally demanding and effortful (Otto, Gershman, Markman, & Daw, 
2013). Recent behavioral and fMRI data suggest that model-based learning 
and decision making is impaired in older adults (Eppinger, Heekeren, &  
Li, 2012; Eppinger, Walter, et al., 2013). These impairments seem to be 
associated with a substantial under-recruitment of the lateral prefrontal 
cortex during the learning of higher-order contingencies in the decision 
space. Certainly, more research is needed to define and understand age-
related changes in model-free and model-based decision mechanisms as 
well as their interactions and boundary conditions (Lee et al., 2014).

Most of the studies that directly targeted the dopamine system using 
PET have focused on age differences in WM updating and executive con-
trol, but more or less ignored motivational functions (Bäckman, Nyberg, 
Lindenberger, Li, & Farde, 2006). This is surprising, given the well- 
established role of DA for motivation and the fact that we seem to have a 
much better mechanistic understanding of reward-based learning and deci-
sion processes than WM or executive control. Future studies should fill this 
gap, ideally by combining neurocomputational approaches with functional 
neuroimaging. Ultimately, the goal of this research should be to link results 
back to everyday life situations that involve decisions from experience, to 
allow not only to learn about the involved mechanisms but also to learn 
how to improve decision making under uncertainty across the life span.

Potential Interventions to Ameliorate Learning Deficits in 
Older Adults

Naturally, findings on age-related deficits in DA function and their  
consequences for behavior raise the question about pharmacological 
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interventions in old age that might ameliorate cognitive deficits. Data 
from a recent study suggest that the DA precursor l-DOPA, which is com-
monly used to treat later-stage Parkinson’s disease, partially restores stria-
tal Pe signaling in older adults (Chowdury et al., 2013). However, in this 
study older adults did not seem to benefit from this treatment in terms of  
performance, which raises questions about the usefulness of an interven-
tion using l-DOPA. Furthermore, it should be noted that l-DOPA may 
induce negative side effects such as nausea, arrhythmia, and extreme 
emotional states, and the consequences of longer-term use of such medi-
cations are unclear. Additionally, the outcome of pharmacological stud-
ies using dopamine agonists is less straightforward than one would wish. 
Another study that used an l-DOPA manipulation in combination with a 
task that taxes interference control showed a negative effect in younger 
adults (possibly due to excessive DA levels) and no effect on performance 
in older adults (Onur, Piefke, Lie, Thiel, & Fink, 2011). Similar to these 
results, a study using DA agonists and antagonists during memory encod-
ing in older adults did not show significant differences in drug effects on 
memory when compared to younger adults (Morcom et al., 2010). Thus, 
the results of studies using pharmacological interventions in combination 
with cognitive tasks are mixed, and the effects are generally weak. One 
apparent problem with most of the pharmacological interventions is that 
the mechanisms by which these drugs interact with the neuromodulatory 
system are very complex and probably not specific to a certain cogni-
tive function. Furthermore, the drug effects may depend on individual 
difference in baseline DA levels as well as genetic predispositions. These 
factors add another level of complexity to the development of potential 
pharmacological interventions. Drugs that are assumed to enhance cogni-
tive function but are less specifically associated with dopamine, such as 
Modafinil, have, to our knowledge, not been systematically investigated 
in age-comparative studies.

Another way to interact with the DA system is to provide primary and 
secondary reinforcers in the context of cognitive or motivational tasks to 
support performance. Recent work in younger adults suggests that per-
formance-dependent reward incentives support executive control abili-
ties (such as the ability to switch between tasks or to perform two tasks 
in parallel) (Savine & Braver, 2013). Similar effects were obtained with 
respect to episodic memory performance for rewarded, as compared to 
non-rewarded, information (Adcock, Thangavel, Withfield-Gabrieli, 
Knutson, & Gabrieli, 2006; Wittmann et al., 2005). An age-comparative 
ERP study (Eppinger et al., 2010) showed that reward during learning 
enhances subsequent memory performance to a similar degree in younger 
and older adults. Similar findings were obtained by Mather and Schoeke 
(2011). Work by Anguera and colleagues (2013) suggests that training 
using a video game enhances cognitive control abilities and improves pre-
frontal brain function. These effects may partially be due to the rewarding 
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properties of the computer game. Taken together, these results seem to 
support a seemingly trivial conclusion, namely, that younger as well as 
older adults seem to learn and perform better in situations that involve 
incentives. The boundary conditions of these effects as well as the under-
lying neurophysiological mechanisms, however, are not yet determined.

To summarize, in this chapter we provided a link between age-related 
impairments in decisions from experience and age-related deficits in dif-
ferent types of reinforcement learning. Moreover, we showed that com-
putational approaches in combination with neuroimaging can provide an 
important tool to advance our mechanistic understanding of age differ-
ences in decision making. Accumulating evidence suggests that age differ-
ences in Pe signaling may be one of the mechanisms underlying age-related 
impairments in model-free reinforcement learning (Chowdury et al., 2013; 
Eppinger, Schuck, et al., 2013; Samanez-Larkin et al., 2014). These effects 
are most likely due to age differences in dopaminergic neuromodulation. 
In contrast, age deficits in more complex types of learning, such as the 
learning of task structures or state spaces, seem to be associated with a 
reduced recruitment of prefrontal areas (Eppinger, Heekeren, & Li, under 
review). Both learning deficits may contribute to age-related changes in 
decisions from experience, particularly in uncertain and ambiguous deci-
sion situations. Given the ubiquity of these situations in our daily life, 
future research should try to improve decision making abilities in older 
adults by supporting learning mechanisms.
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