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Abstract Influential theories emphasize the importance of predictions in learning: we learn from

feedback to the extent that it is surprising, and thus conveys new information. Here, we explore

the hypothesis that surprise depends not only on comparing current events to past experience, but

also on online evaluation of performance via internal monitoring. Specifically, we propose that

people leverage insights from response-based performance monitoring – outcome predictions and

confidence – to control learning from feedback. In line with predictions from a Bayesian inference

model, we find that people who are better at calibrating their confidence to the precision of their

outcome predictions learn more quickly. Further in line with our proposal, EEG signatures of

feedback processing are sensitive to the accuracy of, and confidence in, post-response outcome

predictions. Taken together, our results suggest that online predictions and confidence serve to

calibrate neural error signals to improve the efficiency of learning.

Introduction
Feedback is crucial to learning and adaptation. Across domains it is thought that feedback drives

learning to the degree that it is unexpected and, hence, provides new information, for example in

the form of prediction errors that express the discrepancy between actual and expected outcomes

(McGuire et al., 2014; Yu and Dayan, 2005; Behrens et al., 2007; Diederen and Schultz, 2015;

Diederen et al., 2016; Pearce and Hall, 1980; Faisal et al., 2008; Sutton and Barto, 1998;

Wolpert et al., 2011). Yet, the same feedback can be caused by multiple sources: we may be wrong

about what is the correct thing to do, or we may know what to do but accidentally still do the wrong

thing (McDougle et al., 2016). When we know we did the latter, we should discount learning about

the former (McDougle et al., 2019; Parvin et al., 2018). Imagine for instance learning to throw

darts. You know the goal you want to achieve – hit the bullseye – and you might envision yourself

performing the perfect throw to do so. However, you find that the throw you performed as intended

missed the target entirely and did not yield the desired outcome: In this case, you should adjust

what you believe to be the right angle to hit the bullseye, based on how you missed that last throw.

On a different throw you might release the dart at a different angle than intended and thus antici-

pate the ensuing miss: In this case, you may not want to update your beliefs on what is the right

angle of throw. How do people assign credit to either of these potential causes of feedback when

learning how to perform a new task? How do they regulate how much to learn from a given feed-

back depending on how much they know about its causes?
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Performance monitoring, that is the internal evaluation of one’s own actions, could reduce sur-

prise about feedback and uncertainty about its causes by providing information about execution

errors. For instance in the second dart throw example, missing the target may be unsurprising if per-

formance monitoring detected that, for example, the dart was released differently than desired

(Figure 1A). In simple categorical choices, people are often robustly aware of their response errors

(Maier et al., 2011; Yeung et al., 2004; Riesel et al., 2013; Maier et al., 2012) and this awareness

is reflected in neural markers of error detection (Murphy et al., 2015). Although errors are often

studied in simple categorization tasks in which responses are either correct or incorrect, in many

tasks, errors occur on a graded scale (e.g. a dart can miss the target narrowly or by a large margin),

and both error detection, as well as feedback processing are sensitive to error magnitude

(Luft et al., 2014; Ulrich and Hewig, 2014; Frömer et al., 2016a; Arbel and Donchin, 2011). Peo-

ple are even able to report gradual errors reasonably accurately (Kononowicz et al., 2019;

Akdoğan and Balcı, 2017; Kononowicz and van Wassenhove, 2019).

This ability may be afforded by reliance on internal models to predict the outcome of movements

(Wolpert and Flanagan, 2001), for example, based on an efference copy of a motor command.

These predictions could help discount execution errors in learning from feedback. In fact, if these

predictions perfectly matched the execution error that occurred, the remaining mismatch between

predicted and obtained feedback (sensory prediction error) could serve as a reliable basis for adap-

tation and render feedback maximally informative about the mapping from actions to outcomes

(Figure 1B).

Although participants are able to evaluate their own performance reasonably well, error detection

is far less certain than outlined in the ideal scenario above, and the true cause of feedback often

remains uncertain to some extent. People are critically sensitive to uncertainty, and learn more from

feedback when they expect it to be more informative (McGuire et al., 2014; Schiffer et al., 2017;

Bland and Schaefer, 2012; Nassar et al., 2010; O’Reilly, 2013). Uncertainty about what caused a

given feedback inevitably renders it less informative, similar to decreases in reliability, and this uncer-

tainty should be taken into account when learning from it. Confidence could support such adaptive

learning from feedback by providing a read-out of the subjective precision of predicted outcomes

(Nassar et al., 2010; Vaghi et al., 2017; Meyniel et al., 2015; Pouget et al., 2016), possibly relying

on shared neural correlates of confidence with error detection (Boldt and Yeung, 2015; van den

Berg et al., 2016). Similar to its role in regulating learning of transition probabilities (Meyniel et al.,

2015; Meyniel and Dehaene, 2017), information seeking/exploration in decision making

(Desender et al., 2018a; Boldt et al., 2019), and hierarchical reasoning (Sarafyazd and Jazayeri,

2019), people could leverage confidence to calibrate their use of online predictions. In line with this

suggestion, people learn more about advice givers when they are more confident in the choices that

advice is about (Carlebach and Yeung, 2020). In the throwing example above, the more confident

you are about the exact landing position of the dart, the more surprised you should be when you

find that landing position to be different: The more confident you are, the more evidence you have

that your internal model linking angles to landing positions is wrong, and the more information you

get about how this model is wrong. Thus, you should learn more when you are more confident. How-

ever, this reasoning assumes that your predictions are in fact more precise when you are more confi-

dent, i.e., that your confidence is well calibrated (Figure 1B).

In the present study, we tested the hypothesis that performance monitoring – error detection and

confidence (Yeung and Summerfield, 2012) – adaptively regulates learning from feedback. This

hypothesis predicts that error detection and confidence afford better learning, with confidence

mediating the relationship between outcome predictions and feedback, and that learning is compro-

mised when confidence is mis-calibrated (Figure 1C). It further predicts that established neural cor-

relates of feedback processing, such as the feedback-related negativity (FRN) and the P3a

(Ullsperger et al., 2014a), should integrate information about post-response outcome predictions

and confidence. That is to say, an error that could be predicted based on internal knowledge of how

an action was executed should not yield a large surprise (P3a) or reward prediction error (FRN) signal

in response to an external indicator of the error (feedback). However, any prediction error should be

more surprising when predictions were made with higher confidence. We formalize our predictions

using a Bayesian model of learning and test them using behavioral and EEG data in a modified time-

estimation task.
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Figure 1. Interactions between performance monitoring and feedback processing. (A) Illustration of dynamic updating of predicted outcomes based on

response information. Pre-response the agent aims to hit the bullseye and selects the action he believes achieves this goal. Post-response the agent

realizes that he made a mistake and predicts to miss the target entirely, being reasonably confident in his prediction. In line with his prediction and thus

unsurprisingly the darts hits the floor. (B) Illustration of key concepts. Left: The feedback received is plotted against the prediction. Performance and

prediction can vary in their accuracy independently. Perfect performance (zero deviation from the target, dark blue line) can occur for accurate or

inaccurate predictions and any performance, including errors, can be predicted perfectly (predicted error is identical to performance, orange line).

When predictions and feedback diverge, outcomes (feedback) can be better (closer to the target, area highlighted with coarse light red shading) or

worse (farther from the target, area highlighted with coarse light blue shading) than predicted. The more they diverge the less precise the predictions

are. Right: The precision of the prediction is plotted against confidence in that prediction. If confidence closely tracks the precision of the predictions,

that is if agents know when their predictions are probably right and when they’re not, confidence calibration is high (green). If confidence is

independent of the precision of the predictions, then confidence calibration is low. (C) Illustration of theoretical hypotheses. Left: We expect the

correspondence between predictions and Feedback to be stronger when confidence is high and to be weaker when confidence is low. Right: We

expect that agents with better confidence calibration learn better. (D) Trial schema. Participants learned to produce a time interval by pressing a button

following a tone with their left index finger. Following each response, they indicated on a visual analog scale in sequence the estimate of their accuracy

(anchors: ‘much too short’ = ‘viel zu kurz’ to ‘much too long’ = ‘viel zu lang’) and their confidence in that estimate (anchors: ‘not certain’ = ‘nicht sicher’

to ‘fully certain’ = ‘völlig sicher’) by moving an arrow slider. Finally, feedback was provided on a visual analog scale for 150 ms. The current error was

displayed as a red square on the feedback scale relative to the target interval indicated by a tick mark at the center (Target, t) with undershoots shown

to the left of the center and overshoots to the right, and scaled relative to the feedback anchors of -/+1 s (Scale, s; cf. E). Participants are told neither

Target nor Scale and instead need to learn them based on the feedback. (E) Bayesian Learner with Performance Monitoring. The learner selects an

intended response (i) based on the current estimate of the Target. The Intended Response and independent Response Noise produce the Executed

Response (r). The Efference Copy (c) of this response varies in its precision as a function of Efference Copy Noise. It is used to generate a Prediction as

the deviation from the estimate of Target scaled by the estimate of Scale. The Efference Copy Noise is estimated and expressed as Confidence (co),

approximating the precision of the Prediction. Learners vary in their Confidence Calibration (cc), that is, the precision of their predictions, and higher

Confidence Calibration (arrows: green >yellow > magenta) leads to more reliable translation from Efference Copy precision to Confidence. Feedback is

provided according to the Executed Response and depends on the Target and Scale, which are unknown to the learner. Target and Scale are inferred

Figure 1 continued on next page
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Results

Rationale and approach
Our hypothesis that performance monitoring regulates adaptive learning from feedback makes two

key behavioral predictions (Figure 1C): (1) The precision of outcome predictions (i.e. the correlation

between predicted and actual outcomes) should increase with confidence. (2) Learners with superior

calibration of confidence to the precision of their outcome predictions should learn more quickly.

Our hypothesis further predicts that feedback processing will be critically modulated by an agent’s

outcome prediction and confidence. We tested these predictions mechanistically using computa-

tional modeling and empirically based on behavioral and EEG data from 40 participants performing

a modified time-estimation task (Figure 1D). In comparison to darts throwing as used in our exam-

ple, the time estimation task requires a simple response – a button press – such that errors map

onto a single axis that defines whether the response was provided too early, timely, or too late and

by how much. These errors can be mapped onto a feedback scale and, just as in the darts example

where one learns the correct angle and acceleration to hit the bullseye, participants here can learn

the target timing interval. In addition to requiring participants to learn and produce a

precisely timed action on each trial, our task also included two key measurements that allowed us to

better understand how performance monitoring affects feedback processing: (1) Participants were

required to predict the feedback they would receive on each trial and indicate it on a scale visually

identical to the feedback scale (Figure 1D, Prediction) and (2) Participants indicated their degree of

confidence in this prediction (Figure 1D, Confidence). Only following these judgments would they

receive feedback about their time estimation performance.

A mechanism for performance monitoring-augmented learning
As a demonstration of proof of the hypothesized learning principles, we implemented a computa-

tional model that uses performance monitoring to optimize learning from feedback in that same task

(Figure 1E). The agent’s goal is to learn the mapping between its actions and their outcomes (sen-

sory consequences) in the time-estimation task, wherein feedback on an initially unknown scale must

be used to learn accurately timed actions. Learning in this task is challenged in two ways: First, errors

signaled by feedback include contributions of response noise, for example, through variability in the

motor system or in the representations of time (Kononowicz and van Wassenhove, 2019;

Balci et al., 2011). Second, the efference copy of the executed response (or the estimate of what

was done) varies in its precision. To overcome these challenges, the agent leverages performance

monitoring: It infers the contribution of response noise to a given outcome based on an outcome

prediction derived from the efference copy, and the degree of confidence in its prediction based on

an estimate of the current efference copy noise. The agent then weighs Prediction and Intended

Response as a function of Confidence and Response Noise when updating beliefs about the Target

and the Scale based on Feedback.

We compare this model to one that has no insights into its trial-by-trial performance, but updates

based on feedback and its fidelity due to response noise alone (Feedback), and another model that

has insights into its trial-by-trial performance allowing it to generate predictions, and into the aver-

age precision of its predictions, but not the precision of its current prediction

(Feedback + Prediction). We find that performance improves as the amount of insight into the

agent’s performance increases (Figure 1F): The optimally calibrated Bayesian learner with perfor-

mance monitoring outperforms both other models. Further, in line with our behavioral predictions,

we find in this model that confidence varies with the precision of predictions (Figure 2A, Figure 2—

figure supplement 1) and, when varying the fidelity of confidence as a read-out of precision (Confi-

dence Calibration), agents with superior Confidence Calibration learn better (Figure 2B, Figure 2—

Figure 1 continued

based on Feedback (f), Response Noise, Prediction, and Confidence. Variables that are observable to the learner are displayed in solid boxes, whereas

variables that are only partially observable are displayed in dashed boxes. (F) Target and scale error (absolute deviation of the current estimates from

the true values) for the Bayesian learner with Performance monitoring (green, optimal calibration), a Feedback-only Bayesian Learner (solid black), and a

Bayesian Learner with Outcome Prediction (dashed black).
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Figure 2. Relationships between outcome predictions and actual outcomes in the model and observed data (top vs.bottom). (A) Model prediction for

the relationship between Prediction and actual outcome (Feedback) as a function of Confidence. The relationship between predicted and actual

outcomes is stronger for higher confidence. Note that systematic errors in the model’s initial estimates of target (overestimated) and scale

(underestimated) give rise to systematically late responses, as well as underestimation of predicted outcomes in early trials, visible as a plume of

datapoints extending above the main cloud of simulated data. (B) The model-predicted effect of Confidence Calibration on learning. Better Confidence

Calibration leads to better learning. (C) Observed relationship between predicted and actual outcomes. Each data point corresponds to one trial of

one participant; all trials of all participants are plotted together. Regression lines are local linear models visualizing the relationship between predicted

and actual error separately for high, medium, and low confidence. At the edges of the plot, the marginal distributions of actual and predicted errors

are depicted by confidence levels. (D) Change in error magnitude across trials as a function of confidence calibration. Lines represent LMM-predicted

error magnitude for low, medium and high confidence calibrations, respectively. Shaded error bars represent corresponding SEMs. Note that the

combination of linear and quadratic effects approximates the shape of the learning curves, better than a linear effect alone, but predicts an

exaggerated uptick in errors toward the end, Figure 2—figure supplement 3. Inset: Average Error Magnitude for every participant plotted as a

function of Confidence Calibration level. The vast majority of participants show positive confidence calibration. The regression line represents a local

linear model fit and the error bar represents the standard error of the mean.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure 2 continued on next page
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figure supplement 1). We next sought to test whether participants’ behavior likewise displays these

hallmarks of our hypothesis.

Confidence reflects precision of outcome predictions
To test the predictions of our model empirically, we examined behavior of 40 human participants

performing the modified time-estimation task. To test whether the precision of outcome predictions

increases with confidence, we regressed participants’ signed timing production errors (signed error

magnitude; scale: undershoot [negative] to overshoot [positive]) on their signed outcome predictions

(Predicted Outcome; same scale as for signed error magnitude), Confidence, Block, as well as their

interactions. Our results support our first behavioral prediction (Table 1): As expected, predicted

outcomes and actual outcomes were positively correlated, indicating that participants could broadly

indicate the direction and magnitude of their errors. Crucially, this relationship between predicted

and actual outcomes was stronger for predictions made with higher confidence (Figure 2C).

In addition to this expected pattern, we found that both outcome predictions, as well as confi-

dence calibration, improved across blocks, suggestive of learning at the level of performance moni-

toring (Figure 2—figure supplement 2). Note however that participants tended to bias their

predictions toward the center of the scale in early blocks, when they had little knowledge about the

target interval and could thus determine neither over- vs. undershoots nor their magnitude. This stra-

tegic behavior may give rise to the apparent improvements in performance monitoring.

To test more directly our assumption that Confidence tracks the precision of predictions, we fol-

lowed up on these findings with a complementary analysis of Confidence as the dependent variable

and tested how it relates to the precision of predictions (absolute discrepancy between predicted

and actual outcome, see sensory prediction error, SPE below), the precision of performance (error

magnitude), and how those change across blocks (Table 2). Consistent with our assumption that

Confidence tracks the precision of predictions, we find that it increases as the discrepancy between

Figure 2 continued

Figure supplement 1. Model comparison.

Figure supplement 2. Predictions and Confidence improve as learning progresses.

Figure supplement 3. Running average log error magnitude across trials.

Table 1. Relations between actual performance outcome (signed error magnitude), predicted outcome, confidence in predictions

and their modulations due to learning across blocks of trials.

Signed error magnitude

Predictors Estimates SE CI t p

Intercept 4.63 9.99 �14.94–24.20 0..46 6.427e-01

Predicted Outcome 523.99 29.66 465..86–582.12 17.67 7.438e-70

Block 29.47 8.12 13..56–45.37 3..63 2.832e-04

Confidence �27.07 11.05 �48.73 – �5.42 �2..45 1.428e-02

Predicted Outcome: Block �149.70 21.90 �192.62 – �106.78 �6..84 8.145e-12

Predicted Outcome: Confidence 322.56 27.31 269.03–376.09 11.81 3.477e-32

Block: Confidence �25.52 9..15 �43.46 – �7.58 �2..79 5.297e-03

Predicted Outcome: Block: Confidence 90.68 33.65 24.73–156.64 2..69 7.043e-03

Random effects Model Parameters

Residuals 54478.69 N 40

Intercept 3539.21 Observations 9996

Confidence 2813.79 log-Likelihood �68816.092

Predicted Outcome 22357.33 Deviance 137632.185

Formula: Signed error magnitude ~Predicted Outcome*Block*Confidence+(Confidence +Predicted Outcome+Block|participant); Note: ‘:” indicates inter-

actions between predictors.
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predicted and actual outcome decreases. Confidence was also higher for larger errors, presumably

because their direction (i.e. overshoot or undershoot) is easier to judge. The relationships with both

the precision of the prediction and error magnitude changed across blocks, and confidence

increased across blocks as well.

To test whether these effects reflect monotonic increases in confidence and its relationships with

prediction error and error magnitude, as expected with learning, we fit a model with block as a cate-

gorical predictor and SPE and Error Magnitude nested within blocks (Supplementary file 1). We

found that confidence increased numerically from each block to the next, with significant differences

between block 1 and 2, as well as block 3 and 4. Its relationship to error magnitude was reduced in

the first block compared to the remaining blocks and enhanced in the final two blocks compared to

the remaining blocks. These findings are thus consistent with learning effects. While the precision of

predictions was more strongly related to confidence in the final block compared to the remaining

blocks, it was not less robustly related in the first block, and instead somewhat weaker in the third

block. This pattern is thus not consistent with learning. Importantly, whereas error magnitude was

robustly related to confidence only in the last two blocks, the precision of the prediction was

robustly related to confidence throughout.

Having demonstrated that, across individuals, confidence reflects the precision of their predic-

tions (via the correlation with SPE), we next quantified this relationship for each participant sepa-

rately as an index of their confidence calibration. While quantifying the relationship, we controlled

for changes in performance across blocks, and to ease interpretation, we sign-reversed the obtained

correlations so that higher values correspond to better confidence calibration. We next tested our

hypothesis that confidence calibration relates to learning.

Superior calibration of confidence judgments relates to superior
learning
To empirically test our second behavioral prediction, that people with better confidence calibration

learn faster, we modeled log-transformed trial-wise error magnitude as a function of Trial (linear and

quadratic effects to account for non-linearity in learning, that is stronger improvements in the begin-

ning), Confidence Calibration for each participant (Figure 2D inset), and their interaction (Table 3).

As expected, Confidence Calibration interacted significantly with the linear Trial component, that is

with learning (Figure 2D). Thus, participants with better confidence calibration showed greater per-

formance improvements during the experiment. Importantly, Confidence Calibration did not signifi-

cantly correlate with overall performance (Figure 2D inset), supporting the assumption that

Table 2. Relations of confidence with the precision of prediction and the precision of performance and changes across blocks.

Confidence

Predictors Estimates SE CI t p

(Intercept) 0.26 0.04 0.18–0.33 6.35 2.187e-10

Block 0.05 0.02 0.02–0.08 3.05 2.257e-03

Sensory Prediction Error (SPE) �0.44 0.04 �0.52 – �0.36 �10.84 2.289e-27

Error Magnitude (EM) 0.17 0.05 0.08–0.27 3.73 1.910e-04

Block: SPE �0.08 0.04 �0.15 – �0.00 �1.99 4.642e-02

Block: EM 0.15 0.05 0.05–0.25 3.07 2.167e-03

Random effects Model Parameters

Residuals 0.12 N 40

Intercept 0.06 Observations 9996

SPE 0.03 log-Likelihood �3640.142

Error Magnitude 0.06 Deviance 7280.284

Block 0.01

Error Magnitude: Block 0.04

Formula: Confidence ~ (SPE +Error Magnitude)*Block+(SPE +Error Magnitude *Block|participant); Note: ‘:” indicates interactions between predictors.
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confidence calibration relates to learning (performance change), rather than performance per se.

Confidence calibration was also not correlated with individual differences in response variance (r = -

2.07e-4, 95% CI = [�0.31, 0.31], p=0.999), and the interaction of confidence calibration and block

was robust to controlling for running average response variance (Supplementary file 2).

Thus, taken together, our model simulations and behavioral results align with the behavioral pre-

dictions of our hypothesis: Participants’ outcome predictions were better related to actual outcomes

when those outcome predictions were made with higher confidence, and individuals with superior

confidence calibration showed better learning.

Outcome predictions and confidence modulate feedback signals and
processing
At the core of our hypothesis and model lies the change in feedback processing as a function of out-

come predictions and confidence. It is typically assumed that learning relies on prediction errors,

and signatures of prediction errors have been found in scalp-recorded EEG signals. Before testing

directly how feedback is processed, as reflected in distinct feedback related ERP components, we

will show how these prediction errors vary over time, and as a function of confidence.

We dissociate three signals that can be processed to evaluate feedback (Figure 3A): The objec-

tive magnitude of the error (Error Magnitude) reflects the degree to which performance needs to be

adjusted regardless of whether that error was predicted or not. The reward prediction error (RPE),

thought to drive reinforcement learning, indexes whether the outcome of a particular response was

better or worse than expected. The sensory prediction error (SPE), thought to underlie forward

model-based and direct policy learning in the motor domain (Hadjiosif et al., 2020), indexes

whether the outcome of a particular response was close to or far off the predicted one. To illustrate

the difference between the two prediction errors, one might expect to miss a target 20 cm to the

left but find the arrow misses it 20 cm to the right instead. There is no RPE, as the actual outcome is

exactly as good or bad as the predicted one, however, there is a large SPE, because the actual out-

come is very different from the predicted one.

Our hypothesis holds that predictions should help discount noise in the error signal and more so

for higher confidence. Prediction errors should thus be smaller than error magnitude and particularly

so when confidence is higher. We find that this is true in our data (Figure 3B, Supplementary file 3

and 4, note that unlike SPE, by definition RPE cannot be larger than error magnitude and that its

magnitude, but not sign varies robustly with confidence).

To examine changes in these error signals with trial-to-trial changes in confidence and learning,

we regressed each of these signals onto Confidence, Block, and their interaction

(Supplementary file 5, Figure 3B). Consistent with our assumption that confidence tracks the preci-

sion of predictions, SPE decreased as confidence increased (b = �71.20, p>0.001), but there were

Table 3. Confidence calibration modulation of learning effects on performance.

log Error Magnitude

Predictors Estimates SE CI t p

(Intercept) 5.17 0.06 5.05–5.30 80.74 0.000e + 00

Confidence Calibration 0.58 0.58 �0.57–1.72 0.99 3.228e-01

Trial (linear) �0.59 0.07 �0.72 – �0.45 �8..82 1.197e-18

Trial (quadratic) 0.16 0.02 0.11–0.20 6.80 1.018e-11

Trial (linear): Confidence Calibration �0.86 0.32 �1.48 – �0.24 �2.72 6.467e-03

Random effects Model Parameters

Residuals 1.18 N 40

Intercept 0..12 Observations 9996

Trial (linear) 0..03 log-Likelihood �15106.705

Deviance 30213.411

Formula: log Error Magnitude ~ (Confidence Calibration* Trial(linear)+Trial(quadratic) + (Trial(linear)|participant)); Note: ‘:’ indicates interactions between

predictors.
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no significant main effects on error magnitude or reward prediction error. However, Confidence sig-

nificantly interacted with Block on all variables (Error Magnitude: b = 30.09, p<0.001, RPE:

b = �64.48, p<0.001, SPE: b = 16.99, p=0.005), such that in the first block, increased Confidence is

associated with smaller Error Magnitudes, less negative RPE, as well as smaller SPE. All error signals

further decreased significantly across blocks (Error Magnitude: b = - 37.10, p<0.001, RPE: b = 36.26,
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Figure 3. Changes in objective and subjective feedback. (A) Dissociable information provided by feedback. An example for a prediction (hatched box)

and a subsequent feedback (red box) are shown overlaid on a rating/feedback scale. We derived three error signals that make dissociable predictions

across combinations of predicted and actual outcomes. The solid blue line indicates Error Magnitude (distance from outcome to goal). As smaller

errors reflect greater rewards, we computed Reward Prediction Error (RPE) as the signed difference between negative Error Magnitude and the

negative predicted error magnitude (solid orange line, distance from prediction to goal). Sensory Prediction Error (SPE, dashed line) was quantified as

the absolute discrepancy between feedback and prediction. Values of Error Magnitude (left), RPE (middle), and SPE (right) are plotted for all

combinations of prediction (x-axis) and outcome (y-axis) location. (B) Predictions and confidence associate with reduced error signals. Average error

magnitude (left), Reward Prediction Error (center), and Sensory Prediction Error (right) are shown for each block and confidence tercile. Average

prediction errors are smaller than average error magnitudes (dashed circles), particularly for higher confidence.
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p<0.001, SPE: b = - 17.54, p<0.001, block wise comparisons significant only from block 1 to 2

Supplementary file 6). These parallel patterns might emerge because prediction errors are derived

from and thus might covary with error magnitude. To test whether changes in prediction errors were

primarily driven by improvements in error magnitude rather than predictions, we reran the previous

RPE and SPE models with error magnitude as a covariate (Supplementary file 7). Controlling for

error magnitude notably reduced linear block effects on RPE (b = 36.26 to b = 10.3). It further elimi-

nated block effects on SPE: b = �17.54 to b = 3.65, p=0.274, as well as the interaction of confidence

and Block (b = 0.10, p=0.984), while the hypothesized main effect of Confidence prevailed

(b = �60.12, p<0.001).

In summary, we find that all error signals decrease across blocks as performance improves.

Although higher confidence is associated with smaller error signals in all three variables early in

learning, across all blocks we find that confidence only has a consistent relationship with smaller sen-

sory prediction errors.

Taken together, these results are consistent with our hypothesis that outcome predictions and

confidence optimize feedback processing. Accordingly, we predicted that participants’ internal eval-

uations would modulate feedback processing as indexed by distinct feedback-related potentials in

the EEG: the feedback-related negativity (FRN), P3a and P3b. Thus, the amplitude of a canonical

index of signed RPE (Holroyd and Coles, 2002), the FRN, should increase to the extent that out-

comes were worse than predicted, that is, with more negative-going RPE. P3a amplitude, a neural

signature of surprise (Polich, 2007), should increase with the absolute difference between partici-

pants’ outcome predictions and actual outcomes (i.e. with SPE) and be enhanced in trials in which

participants indicated higher confidence in their outcome predictions. To further explore the possi-

ble role of performance monitoring in learning, we also tested the joint effects of our experimental

variables on the P3b as a likely index of learning (Fischer and Ullsperger, 2013).

If participants did not take their predictions into account, ERP amplitudes should scale with the

actual error magnitude reflected in the feedback (Error Magnitude). Note that both RPE and SPE are

equivalent to Error Magnitude in the special case where predicted errors are zero (Figure 3A), and

thus Error Magnitude can be thought of as the default RPE and SPE that would arise if an individual

predicted perfect execution on each trial. Thus, if participants did not take knowledge of their own

execution errors into account, their FRN and P3a should both simply reflect Error Magnitude. A key

advantage of our experimental design is that RPE, SPE, and Error Magnitude vary differentially as a

function of actual and predicted outcomes (Figure 3A), which allowed us to test our predictions by

examining whether ERP amplitudes are modulated by prediction errors (SPE and RPE) and Confi-

dence, while controlling for other factors including Error Magnitude.

Reward prediction error modulates the feedback-related negativity
The feedback-related negativity (FRN) is an error-sensitive ERP component with a fronto-central

scalp distribution that peaks between 230 and 330 ms following feedback onset (Miltner et al.,

1997; Figure 4A). It is commonly thought to index neural encoding of RPE (Holroyd and Coles,

2002): Its amplitude increases with the degree to which an outcome is worse than expected and,

conversely, decreases to the extent that outcomes are better than expected (Hajcak et al., 2006;

Holroyd et al., 2006; Walsh and Anderson, 2012; Holroyd et al., 2003; Sambrook and Goslin,

2015). Its amplitude thus decreases with increasing reward magnitude (Frömer et al., 2016a) and

reward expectancy (Lohse et al., 2020). However, it is unknown whether reward prediction errors

signaled by the FRN contrast current feedback with predictions based only on previous (external)

feedback, or whether they might incorporate ongoing (internal) performance monitoring. Based on

our overarching hypothesis, we predicted that FRN amplitude would scale with our estimate of RPE,

which quantifies the degree to which actual feedback was ‘better’ than the feedback predicted after

action execution, causing more negative RPEs to produce larger FRN amplitudes (Figure 4B). A key

alternative option is that the FRN indexes the magnitude of an error irrespective of the participant’s

post-response outcome prediction (e.g. with large FRN to feedback indicating a large error, even

when the participant knows to have committed this error) (Pfabigan et al., 2015; Sambrook and

Goslin, 2014; Talmi et al., 2013). Note that the prediction errors experienced by most error-driven

learning models would fall into this alternative category, as they would reflect the error magnitude

minus some long-term expectation of that magnitude, but not update these expectations after

action execution. Thus, to test whether RPE explains variation in FRN above and beyond Error
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Figure 4. Multiple prediction errors in feedback processing. (A-C) FRN amplitude is sensitive to predicted error magnitude. (A) FRN, grand mean, the

shaded area marks the time interval for peak-to-peak detection of FRN. Negative peaks between 200 and 300 ms post feedback were quantified

relative to positive peaks in the preceding 100 ms time window. (B) Expected change in FRN amplitude as a function of RPE (color) for two predictions

(black curves represent schematized predictive distributions around the reported prediction for a given confidence), one too early (top: high confidence

in a low reward prediction) and one too late (bottom: low confidence in a higher reward prediction). Vertical black arrows mark a sample outcome

(deviation from the target; abscissa) resulting in different RPE/expected changes in FRN amplitude for the two predictions, indicated by shades. Blue

Figure 4 continued on next page
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Magnitude, and to control for other factors, we included Error Magnitude, SPE, Confidence, and

Block in the model (Table 4).

As predicted, FRN amplitude decreased with more positive-going RPEs (b = 1.43, p<0.001,

Figure 4C), extending previous work that investigated prediction errors as a function of reward mag-

nitude and frequency (Holroyd and Coles, 2002; Sambrook and Goslin, 2015). In contrast, error

magnitude and SPE did not significantly affect FRN amplitude, suggesting in the case of the error

magnitude that when errors can be accounted for by faulty execution, they do not drive internal

reward prediction error signals. We found no other reliable effects and when including interaction

terms, they were neither significant, nor supported by model selection (DΧ2(10)=10.98, p=0.359,

AICreduced-full = �9, BICreduced-full = �81). We conclude that FRN amplitude reflects the degree to

which feedback is better than predicted, and critically, that the outcome predictions incorporate

information about likely execution errors.

Sensory prediction error and confidence modulate P3a
The frontocentral P3a is a surprise-sensitive positive-going deflection between 250 and 500 ms fol-

lowing stimulus onset (Figure 3E; Polich, 2007). Its functional significance can be summarized as sig-

naling the recruitment of attention for action to surprising and motivationally relevant stimuli

(Polich, 2007; Nieuwenhuis et al., 2011). P3a has been shown to increase with larger prediction

errors in probabilistic learning tasks (Fischer and Ullsperger, 2013), higher goal-relevance in a go/

no-go task (Walentowska et al., 2016), with increasing processing demands (Frömer et al., 2016b),

and with meta-memory mismatch (feedback about incorrect responses given with high confidence

[Butterfield and Mangels, 2003]).

Figure 4 continued

shades indicate negative RPEs/larger FRN, red shades indicate positive RPEs/smaller FRN and gray denotes zero. Note that these are mirrored at the

goal for any predictions, and that the likelihood of the actual outcome given the prediction (y-axis) does not affect RPE. In the absence of a prediction

or a predicted error of zero, FRN amplitude should increase with the deviation from the target (abscissa). (C) LMM-estimated effects of RPE on peak-to-

peak FRN amplitude visualized with the effects package; shaded error bars represent 95% confidence intervals. (D– I) P3a amplitude is sensitive to SPE

and Confidence. (D) Grand mean ERP with the time-window for quantification of P3a, 330–430 ms, highlighted. (E) Hypothetical internal representation

of predictions. Curves represent schematized predictive distributions around the reported prediction (zero on abscissa). Confidence is represented by

the width of the distributions. (F) Predictions for SPE (x-axis) and Confidence (y-axis) effects on surprise as estimated with Shannon information (darker

shades signify larger surprise) for varying Confidence and SPE (center). The margins visualize the predicted main effects for Confidence (left) and SPE

(bottom). (G) P3a LMM fixed effect topographies for SPE, and Confidence. (H–I) LMM-estimated effects on P3a amplitude visualized with the effects

package; shaded areas in (H) (SPE) and (I) (confidence) represent 95% confidence intervals.

Table 4. LMM statistics of learning effects on FRN.

Peak-to-Peak FRN amplitude

Predictors Estimates SE CI t p

Intercept �12.67 0.49 �13.62 – �11.71 �26.03 2.322e-149

Confidence �0.19 0.15 �0.49–0.11 �1.25 2.126e-01

Reward prediction error 1.43 0.41 0.62–2.24 3.47 5.302e-04

Sensory prediction error �0.67 0.42 �1.49–0.15 �1.61 1.078e-01

Error magnitude 0.51 0.55 �0.57–1.58 0.92 3.553e-01

Block �0.15 0.11 �0.36–0.06 �1.43 1.513e-01

Random effects Model Parameters

Residuals 27.69 N vpn 40

Intercept 9.23 Observations 9678

Error magnitude 2.24 log-Likelihood �29908.910

Block 0.22 Deviance 59817.821

Formula: FRN ~ Confidence + RPE+SPE + EM+Block + (EM +Block|participant).
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Surprise can be quantified using Shannon Information, which reflects the amount of information

provided by an outcome given a probability distribution over outcomes (O’Reilly et al., 2013). As

seen in Figure 4F, this measure scales with increasing confidence, as well as SPE, that is, increasing

deviations between predicted and actual outcome (margins). To generate these predictions, we

computed the Shannon Information for a range of outcomes given a range of predictive distributions

with varying precision, assuming that confidence reflects the precision of a distribution of predicted

outcomes (Figure 4E). Thus, P3a amplitude should scale with both SPE and Confidence. We tested

our predictions by examining whether P3a was modulated by SPE, and Confidence, in a model that

also included Error Magnitude, RPE, and Block as control variables.

As predicted, our analyses showed that P3a amplitude significantly increased with increasing

SPEs, in line with the idea of stronger violations of expectations by less accurately predicted out-

comes (Figure 4G and I, Table 5), and with increasing Confidence (Figure 4G and H). Our Shannon

Information simulation also predicts a small interaction between SPE and Confidence (see slight

diagonal component in Figure 4F). However, when including the interaction term it was not signifi-

cant and did not improve model fit, DΧ2(10)=10.36, p=0.410 (AIC reduced-full = �10, BIC reduced-full =

�81), suggesting that any such effect was minimal.

In addition, P3a amplitude decreased across blocks, perhaps reflecting decreased motivational

relevance of feedback as participants improved their performance and predictions

(Walentowska et al., 2016; Severo et al., 2020). We also observed a significant decrease of P3a

with increasing Error Magnitude and larger P3a amplitudes for more negative reward prediction

errors. However, these effects showed more posterior scalp distributions than those of SPE and con-

fidence. As P3a temporally overlaps with the more posteriorly distributed P3b, these effects are

likely a spillover of the P3b. Hence, we discuss them below. Taken together our results support our

hypothesis that predictions and confidence shape feedback processing at the level of the P3a.

Prediction errors, objective errors, and confidence converge in the P3b
Our overarching hypothesis and model predict that outcome predictions and confidence should

affect the degree to which feedback is used for future behavioral adaptation. The parietally distrib-

uted P3b scales with learning from feedback (Ullsperger et al., 2014a; Fischer and Ullsperger,

2013; Yeung and Sanfey, 2004; Sailer et al., 2010; Chase et al., 2011) and predicts subsequent

behavioral adaptation (Fischer and Ullsperger, 2013; Chase et al., 2011). P3b amplitude has been

found to increase with feedback salience (reward magnitude irrespective of valence; Yeung and San-

fey, 2004), behavioral relevance (choice vs. no choice; Yeung et al., 2005), with more negative-

going RPE (Ullsperger et al., 2014a; Fischer and Ullsperger, 2014), but also with better outcomes

in more complex tasks (Pfabigan et al., 2014).

Table 5. LMM statistics of learning effects on P3a.

P3a Amplitude

Predictors Estimates SE CI t p

Intercept 4.10 0.42 3.28–4.93 9.79 1.293e-22

Confidence 0.97 0.14 0.70–1.24 6.96 3.338e-12

Block �0.91 0.07 �1.05 – �0.77 �12.93 3.201e-38

Sensory prediction error 2.06 0..48 1.11–3.00 4..27 1.969e-05

Reward prediction error �0.75 0.38 �1.49 – �0..01 �1.98 4.794e-02

Error magnitude �1..95 0..44 �2.81 – �1..09 �4.43 9.512e-06

Random effects Model Parameters

Residuals 22.98 N 40

Intercept 6.83 Observations 9678

SPE 3.02 log-Likelihood �28997.990

Deviance 57995.981

Formula: P3a ~ Confidence + Block +SPE + RPE+EM + (SPE|participant).
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Consistent with their necessity for governing behavioral adaptation, P3b was sensitive to partici-

pants’ outcome predictions (Table 6). P3b amplitude increased with increasing SPE (Figure 5B,E),

indicating that participants extracted more information from the feedback stimulus when outcomes

were less expected. As for P3a, this SPE effect decreased across blocks, and so did overall P3b

amplitude, suggesting that participants made less use of the feedback as they improved on the task

(Fischer and Ullsperger, 2013).

P3b amplitude also increased with negative-going RPE (Figure 5B,C), hence, for worse-than-

expected outcomes, replicating previous work (Ullsperger et al., 2014a; Fischer and Ullsperger,

2014). This RPE effect was significantly modulated by Confidence and Block, indicating that the

main effect needs to be interpreted with caution, and the relationship between P3b and RPE is more

nuanced than previous literature suggested. As shown in Figure 5D in the first block, P3b amplitude

was highest for large negative RPE and high Confidence, whereas in the last block it was highest for

large negative RPE and low Confidence (see below for follow-up analyses).

In line with previous findings (Pfabigan et al., 2014; Ernst and Steinhauser, 2018), we further

observed significant increases of P3b amplitude with decreasing Error Magnitude, thus, with better

outcomes (Figure 5B,F, Table 5). We found no further significant interactions, and excluding the

non-significant interaction terms from the full model did not significantly diminish goodness of fit,

DΧ2(5)=10.443, p=0.064 (AICreduced-full = 0; BICreduced- full = �35).

Our hypothesis states that the degree to which people rely on their predictions when learning

from feedback should vary with their confidence in those predictions. In the analysis above, we

observed such an interaction with confidence only for RPE (and Block). RPE is derived from the con-

trast between Error Magnitude and Predicted Error Magnitude, and changes in either variable or

their weighting could drive the observed interaction. To better understand this interaction and test

explicitly whether confidence regulates the impact of predictions, we therefore ran complementary

analyses where instead of RPE we included Predicted Error Magnitude (Table 7). Confirming its rele-

vance for the earlier interaction involving RPE, Predicted Error Magnitude indeed interacted with

Confidence and Block. Consistent with confidence-based regulation of learning, a follow-up analysis

showed that in the first block, P3b significantly increased with higher Confidence, and importantly

decreased significantly more with increasing Predicted Error Magnitude as Confidence increased

Table 6. LMM statistics of learning effects on P3b.

P3b Amplitude

Predictors Estimates SE CI t p

Intercept 4.12 0.29 3.55–4.70 14.12 2.937e-45

Block �0.48 0.09 �0.66 – �0.30 �5.20 2.037e-07

Confidence 0.08 0.20 �0.31–0.48 0.42 6.740e-01

Reward prediction error �1.12 0.46 �2.03 – �0.22 �2.43 1.493e-02

Sensory prediction error 1.75 0.47 0.84–2.66 3.76 1.691e-04

Error magnitude �2.35 0.46 �3.24 – �1.45 �5.14 2.743e-07

Confidence: Reward prediction error �0.51 0.55 �1.60–0.57 �0.92 3.556e-01

Block: Confidence 0.07 0.18 �0.28–0.43 0.41 6.823e-01

Block: Reward prediction error �0.52 0.44 �1.39–0.34 �1.19 2.359e-01

Block: Sensory prediction error �0.98 0.46 �1.88 – �0.07 �2.12 3.405e-02

Block: Confidence: Reward prediction error 2.22 0.72 0.81–3.64 3.08 2.057e-03

Random effects

Residuals 23.95 N 40

Intercept 3.17 Observations 9678

Sensory Prediction Error 2.16 log-Likelihood �29197.980

Reward prediction error 1.67 Deviance 58395.960

Confidence 0.63

Formula: P3b ~ Block*(Confidence*RPE +SPE)+Error Magnitude + (SPE +RPE + Confidence|participant); Note: ‘:” indicates interactions.
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Figure 5. Performance-relevant information converges in the P3b. (A) Grand average ERP waveform at Pz with the time window for quantification, 416–

516 ms, highlighted. (B) Effect topographies as predicted by LMMs for RPE, error magnitude, SPE and the RPE by Confidence by Block interaction. (C–

F) LMM-estimated effects on P3b amplitude visualized with the effects package in R; shaded areas represent 95% confidence intervals. (C.) RPE. Note

Figure 5 continued on next page
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(Supplementary file 8). Main effects of Predicted Error Magnitude emerged only in the late blocks

when participants were overall more confident.

Hence, our P3b findings indicate that early on in learning, when little is known about the task,

participants learn more and discount their predictions more when they have high confidence in those

predictions. In later trials however, when confidence is higher overall, participants discount their pre-

dicted errors even when confidence is relatively lower.

We next explored whether P3b amplitude is associated with trial-by-trial adjustments. To that

aim, we computed the improvement on trial n as the difference between the error on trial n and the

error on trial n-1. Time-estimation responses are noisy, and thus provide only a coarse trial-by-trial

indicator of learning. Consistent with regression to the mean, where larger errors are more likely fol-

lowed by smaller errors, improvements increased with the magnitude of the error on the previous

trial (b = 0.85, p<0.001, Supplementary file 9). We find, however, that this effect varies across

blocks (b = 0.13, p<0.001), and is least pronounced in the first block when most learning takes place

(Block 1: b = 0.66, p<0.001; Block 2–5: b >= 0.90, p<0.001, Supplementary file 10). We thus next

tested whether P3b on trial n-1 mediates the relationship between error magnitude on trial n-1 and

the improvement on the current trial, leading to stronger improvements following a given error, par-

ticularly in the first block when most learning takes place and performance is less determined by pre-

vious error alone. Indeed, we found a significant three-way interaction between previous error

magnitude, previous P3b amplitude and Block (b = - 0.03, p=0.031, Supplementary file 9, Fig-

ure 5—figure supplement 1) on improvement. A follow-up analysis confirmed that P3b mediated

the relationship between previous error magnitude and improvement in the first block (b = 0.06,

p<0.001, Supplementary file 10). This interaction was not significant within any of the remaining

Figure 5 continued

the interaction effects with Block and Confidence (D), that modulate the main effect (D) Three-way interaction of RPE, Confidence and Block. Asterisks

denote significant RPE slopes within cells. (E) P3b amplitude as a function of SPE. (F) P3b amplitude as a function of Error Magnitude.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. P3b to feedback modulates error-related adjustments on the subsequent trial.

Table 7. LMM statistics of confidence weighted predicted error discounting on P3b.

P3b Amplitude

Predictors Estimates SE CI t p

Intercept 4.26 0.30 3.68–4.85 14.22 7.239e-46

Confidence 0.31 0.22 �0.12–0.75 1.41 1.595e-01

Predicted error magnitude �0.83 0.46 �1.74–0.07 �1.80 7.133e-02

Block �0.32 0.11 �0.52 – �0.11 �2.98 2.860e-03

Error magnitude �1.06 0.49 �2.03 – �0.09 �2.13 3.277e-02

Sensory prediction error 1.49 0.40 0.71–2.28 3.72 1.992e-04

Confidence: Predicted error magnitude �0.98 0.69 �2.34–0.38 �1.41 1.582e-01

Confidence: Block �0.50 0.20 �0.90 – �0.11 �2.50 1.249e-02

Predicted Error magnitude: Block �1.12 0.56 �2.22 – �0.02 �2.00 4.540e-02

Confidence:
Predicted error magnitude: Block

3.12 0.84 1.47–4.78 3.70 2.141e-04

Random effects Model Parameters

Residuals 23.98 N 40

Intercept 3.30 Observations 9678

Error magnitude 3.43 log-Likelihood �29201.951

Confidence 0.72 Deviance 58403.902

Formula: P3b ~ Block*(Confidence*Predicted Error Magnitude +SPE)+Error Magnitude + (Error Magnitude +Confidence|participant); Note: ‘:” indicates

interactions.
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blocks. While intriguing and in line with previous work linking P3b to trial-by-trial adjustments in

behavior, these results should be interpreted with a degree of caution given that the present task is

not optimized to test for trial-to-trial adjustments in behavior.

Taken together, our ERP findings support our main hypothesis that individuals take their internal

evaluations into account when processing feedback, such that distinct ERP components reflect differ-

ent aspects of internal evaluations rather than just signaling objective error.

Discussion
The present study explored the hypothesis that learning from feedback depends on internal perfor-

mance evaluations as reflected in outcome predictions and confidence. Comparing different Bayes-

ian agents with varying insights into their trial-by-trial performance, we show that performance

monitoring provides an advantage in learning, as long as agents’ confidence is accurately calibrated.

To test our hypothesis empirically, we collected participants’ trial-wise outcome predictions and con-

fidence judgments in a time-estimation task prior to receiving feedback, while recording EEG. Like

the simulations from the Bayesian learner with performance monitoring, our empirical results show

that trial-by-trial confidence tracks the precision of outcome predictions, and individuals with better

coupling between confidence and the precision of their predictions (confidence calibration) showed

greater improvements in performance over the course of the experiment. Moreover, participants’

subjective predictions, as well as their confidence in those predictions, influenced feedback process-

ing as revealed by feedback-related potentials.

Our study builds on an extensive body of work on performance monitoring, proposing that devia-

tions from performance goals are continuously monitored, and expectations are updated as soon as

novel information becomes available (Holroyd and Coles, 2002; Ullsperger et al., 2014b). Hence,

performance monitoring at later stages should depend on performance monitoring at earlier stages

(Holroyd and Coles, 2002). Specifically, learning from feedback should critically depend on internal

performance monitoring. Our results extend previous work demonstrating a shift from feedback-

based to response-based evaluations as learning progresses (Bellebaum and Colosio, 2014;

Bultena et al., 2017): They show that performance monitoring and learning from feedback are not

mutually exclusive modes of performance evaluation; instead, they operate in concert, with confi-

dence in response-based outcome predictions determining the degree to which this information is

relied on.

Participants’ behavior displayed hallmarks of error monitoring (Kononowicz et al., 2019;

Akdoğan and Balcı, 2017; Kononowicz and van Wassenhove, 2019), such that outcome predic-

tions tracked factual errors in both direction and magnitude. Crucially, extending those previous

findings, our empirical results align with unique predictions based on our hypothesis: Confidence

reflected the precision of participants’ outcome predictions, and participants with superior calibra-

tion of their confidence judgments to the accuracy of their predictions learned better than those

with poorer calibration. This latter finding is notable given that overall confidence calibration was

similar for participants with different performance quality (error magnitude, response variance).

Therefore, the empirical confidence calibration effect on learning is unlikely to be a consequence of

better overall ability as described in the ‘unskilled and unaware effect’ (Kruger and Dunning, 1999)

or of the dependence of confidence calibration (or metacognitive sensitivity) on performance

(Fleming and Lau, 2014). Instead, the finding supports our hypothesis that confidence supports

learning via optimized feedback processing.

Our simulations and ERP data reveal two critical mechanisms through which performance moni-

toring may impact learning from feedback: modulation of surprise and reduction of uncertainty via

credit assignment. The main impact of error monitoring is to reduce the surprise about outcomes.

All else being equal, a given outcome is less surprising the better it matches the predicted outcome.

Consistent with discounting of predicted deviations from the goal, we found that participants’ trial-

by-trial subjective outcome predictions consistently modulated feedback-based evaluation reflected

in ERPs as evidenced by prediction error effects. Participants’ response-based outcome predictions

were reflected in the amplitudes of FRN reward prediction error signals (Holroyd and Coles, 2002;

Walsh and Anderson, 2012; Sambrook and Goslin, 2015; Correa et al., 2018), of P3a surprise sig-

nals, as well as the P3b signals combining information about reward prediction error and surprise. In

our computational models, reducing surprise by taking response-based outcome predictions into
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account led to more accurate updating of internal representations supporting action selection and

thus superior learning.

Learning – in our computational model and in our participants - was further supported by the

adaptive regulation of uncertainty-driven updating via confidence. Specifically, as deviations from

the goal were predicted with higher confidence, these more precise outcome predictions enhanced

the surprise elicited by a given prediction error. This mechanism implemented in our model is mir-

rored in participants’ increased P3a amplitudes for higher confidence, and further reflected in confi-

dence-weighted impacts of predicted error magnitude on P3b, as well as larger P3b amplitudes for

higher confidence in the first block when most learning took place. Thus, a notable finding revealed

by our simulations and empirical data is that, counterintuitively, agents and participants learned

more from feedback when confidence in their predictions had been high.

Although FRN amplitude was not modulated by confidence, we found that P3a increased with

confidence, as predicted by uncertainty-driven changes in surprise. Our results align with previous

findings of larger P3a amplitude for metacognitive mismatch (Butterfield and Mangels, 2003) and

offer a computational mechanism underlying previous theorizing that feedback about errors commit-

ted with high confidence attracts more attention, and therefore leads to hypercorrection

(Butterfield and Metcalfe, 2006; Butterfield and Metcalfe, 2001). We also found that confidence

modulated the degree to which predicted error magnitude reduced P3b amplitude, such that in ini-

tial blocks, where most learning took place, predicted error magnitude effects were amplified for

higher confidence, whereas this effect diminished in later blocks, where predicted error magnitude

effects were present also for low confidence (and performance and prediction errors were attenu-

ated when confidence was high). This shift is intriguing and may indicate a functional change in feed-

back use as certainty in the response-outcome mapping increases and less about this mapping is

learned from feedback, but the effect was not directly predicted and therefore warrants further

research and replication.

Confidence has typically been studied in two-alternative choice tasks, and only rarely in relation

to continuous outcomes (Meyniel et al., 2015; Meyniel and Dehaene, 2017; Boldt et al., 2019;

Lebreton et al., 2015; Nassar et al., 2012; Arbuzova, 2020). By reconceptualizing error detection

as outcome prediction, our results shed new light on the well-supported claim that error monitoring

and confidence are tightly intertwined (Boldt and Yeung, 2015; Yeung and Summerfield, 2012;

Charles and Yeung, 2019; Desender et al., 2018b; Desender et al., 2019) and forge valuable links

between research on performance monitoring (Ullsperger et al., 2014a; Holroyd and Coles, 2002;

Ullsperger et al., 2014b) and on learning under uncertainty (McGuire et al., 2014; Behrens et al.,

2007; O’Reilly et al., 2013; Nassar et al., 2019). In doing so, our results provide further evidence

to the growing literature on the role of confidence in learning and behavioral adaptation

(Meyniel and Dehaene, 2017; Desender et al., 2018a; Boldt et al., 2019; Colizoli et al., 2018).

While we captured the main effects of interest with our Bayesian model and our key behavioral

results are in line with our overarching hypothesis, our behavioral findings also reveal other aspects

of learning that remain to be followed up on. Unlike our Bayesian agents, participants exhibited sig-

natures of learning not only at the level of first order performance, but also at the level of perfor-

mance monitoring. The precision of their outcome predictions increased as learning progressed, as

did confidence. Identifying the mechanisms that drive this metacognitive learning, that is, whether

changes in confidence follow the uncertainty in the internal model or reflect refinement of the confi-

dence calibration to the efference copy noise, is an exciting question for future work.

Anyone who tried to learn a sport can relate to the intuition that just because you find out what

you did was wrong doesn’t mean you know how to do it right. Our task also evokes this so-called

distal problem, which refers to the difficulty of translating distal sensory outcomes of responses (e.g.

the location of a red dot on a feedback scale) to required proximal movement parameter changes

(changes in the timing of the response). Indeed, when practicing complex motor tasks, individuals

prefer and learn better from feedback following successful trials compared to error trials

(Chiviacowsky and Wulf, 2007; Chiviacowsky and Wulf, 2002; Chiviacowsky and Wulf, 2005). In

line with the notion that in motor learning feedback about success is more informative than feedback

about failure, we, like others in the time estimation task (Pfabigan et al., 2014; Ernst and Stein-

hauser, 2018), observed increasing P3b amplitude after feedback about more accurate performance

(i.e. for smaller error magnitude), in addition to prediction error effects.
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In our study, the P3b component, previously shown to scale with the amount of information pro-

vided by a stimulus (Cockburn and Holroyd, 2018) and the amount of learning from a stimulus

(Fischer and Ullsperger, 2013), was sensitive to both RPE and SPE, indicating that multiple learning

mechanisms may act in parallel, supported by different aspects of feedback. Our findings resonate

with recent work in rodents showing that prediction error signals encode multiple features of out-

comes (Langdon et al., 2018), and are based on distributed representations of predictions

(Dabney et al., 2020). This encoding of multiple features of outcomes, like the uncertainty in predic-

tions, may help credit assignment and support learning at multiple levels. It is still unclear to what

degree different learning mechanisms – error-based, model-based, reinforcement learning – contrib-

ute to motor learning (Wolpert and Flanagan, 2016). Further research is needed to identify whether

the same or different learning mechanisms operate across levels, for example, via hierarchical rein-

forcement learning (Holroyd and Yeung, 2012; Lieder et al., 2018), and how learning interacts

between levels.

Taken together, our findings provide evidence that feedback evaluation is fundamentally affected

by an individual’s internal representations of their own performance at the time of feedback. These

internal representations in turn influence how people learn and thus which beliefs they will have and

which actions they will take, driving what internal and external states they will encounter in the

future. The present study is a first step toward elucidating this recursive process of performance

optimization via internal performance monitoring and monitoring of external task outcomes.

Materials and methods

Task variables

. t denotes the target interval, which was set to t: ¼ 19, (this simulation parameter choice was
necessarily somewhat arbitrary, and choosing a different parameter does not change the mod-
el’s behavior)

. s denotes the feedback scale, which was set to s: ¼ 90,

. r denotes the model’s or participant’s response,

. f denotes the feedback in the task, which was defined as

f :¼ r� tð Þs (1)

Computational model
The Bayesian learner with performance monitoring attempted to sequentially infer the target interval

t and feedback scale s (defining how the magnitude of a given response error translates to the mag-

nitude of the error displayed on the visual feedback scale) over multiple trials, based on its intended

response i, an efference copy c of its executed response and feedback f indicating the magnitude

and direction of its timing errors. On each trial the model computed its intended response based on

the inferred target interval. During learning, the model faced several obstacles including (1) the ini-

tially unknown scale of the feedback, making it difficult to judge whether feedback indicates small or

large timing errors, (2) response noise, which offsets executed responses from intended ones, and

(3) efference copy noise, which makes the efference copy unreliable to a degree that varies from trial

to trial. Formally, the Bayesian learner with performance monitoring is represented by the following

variables:

. p tð ÞU t; 0; 100½ �ð Þ denotes the model’s prior distribution over the target interval t; as a uniform
distribution (denoted by U throughout) of over possible values of t within the range 0 to 100.

. p sð ÞU s; 0:1; 100½ �ð Þ denotes the model’s prior distribution over the feedback scale s, as a uni-
form distribution over possible values of s within a range of 0.1 to 100.

. ps
2

r rjið ÞN r; i;s2

r

� �

denotes the model’s response distribution (N denoting normal distributions

throughout), where i denotes the model’s intended response, which corresponds to the

expected target interval i: ¼ Ep tð Þ ¼
t

X

p tð Þt, and s
2

r denotes the response noise, which was set

to sr: = 10 in terms of the standard deviation

. ps
2

c cjrð ÞN c; r;s2

c

� �

denotes the model’s efference-copy distribution with efference-copy noise

(we simulated three levels: low, medium and high) expressed as standard
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deviation sc 2 5; 10; 20f g, where p scð ÞCat sc; 1=3ð Þ. Here we assumed that the model was aware
of its trial-by-trial efference copy noise. That is, from the perspective of the Bayesian learner
with performance monitoring, efference-copy noise was not a random variable.

Intended response
During the response phase in the task, the model first computed its intended response i and then

sampled its actual response r from the Gaussian response distribution. We assumed that the model’s

internal response monitoring system subsequently generated the noisy efference copy c.

Learning
Based on the definition of the task and the Bayesian learner with performance monitoring, the joint

distribution over the variables of interest during a trial of the task is given by

pi;s
2

c ;s
2

r t; s; f ; r;cð Þ:¼ p f jr; t; sð Þps
2

c cjrð Þpi;s
2

r rð Þp t; sð Þ (2)

To infer the target interval t and the feedback scale s, we can evaluate the posterior distribution

conditional on the efference copy c and feedback f and given the intended response i, response

noise s
2

r and efference copy noise s
2

c according to Bayes’ rule:

pi;s
2

c ;s
2

r t; sjc; fð Þ

/
R

pi;s
2

c ;s
2

r t; sjc; f ; r
8

:

9

;dr

/
R

p f jr; t; s
8

:

9

;rs
2

c cjr
8

:

9

;pi;s
2

r ðrÞpðt; sÞdr

(3)

Note that we assumed that the Bayesian learner with performance monitoring was aware how

feedback f was generated in the task (Equation 1), that is, conditional on the response r, target

interval t and feedback scale s, the model was able to exactly compute the probability of the feed-

back according to

p f jr; t; sð Þ ¼
1; iff ¼ r� tð Þs

0;else

�

(4)

We approximated inference using a grid over the target interval t 2 0;100½ � and feedback

scale s2 0:1;100½ �. The model first computed the probability of the currently received feedback.

Although it was aware how feedback was generated in the task, it suffered from uncertainty over its

response due to noise in the efference copy. For each s and t on the grid, the model evaluated the

Gaussian distribution

pi;s
2

c ;s
2

r f jc; t; sð Þ:¼N f ; m� tð ÞTs;vA
� �

(5)

where A was a 100 � 50 matrix containing the grid values of t and s.

v¼
1

1

s
2
c
þ 1

s
2
r

(6)

denotes the expected variance in feedback under consideration of both efference-copy noise s
2

c and

response noise s
2

r and

m¼ v
1

s
2
c

cþ v
1

s
2
r

i (7)

denotes the expected feedback under the additional consideration of efference copy c and intended

response i. When computing the probability of the feedback, our model thus took into account the

efference copy c and the response it intended to produce i, which were weighted according to their

respective reliabilities.

Second, the model multiplied the computed probability of the observed feedback with the prior

over the scale and target response, that is
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pi;s
2

c ;s
2

r t; sjc; fð Þ /Nðf ; ðm� tÞTs;vAÞpðs; tÞ (8)

In the grid approximation, the model started with a uniform prior on the joint distribution over

t and s and was applied recursively, such that the posterior joint distribution on t and s for each trial

served as the prior distribution for the subsequent one.

Outcome prediction
On each trial, the model reports an outcome prediction po and the confidence in this prediction,

which we refer to as co. The outcome prediction maps the discrepancy between the intended

response and the efference copy onto the feedback scale given the best guess of the current t and

s.

po¼ c� ið Þ
s

X

p sð Þs (9)

Note that this outcome prediction is different from the mean of the uncertainty-weighted expec-

tancy distribution defined in Equation 7, in that it does not take uncertainty into account, but

reflects the expectation given the efference copy alone. The inverse uncertainty s
2

c of the efference

copy, as described below, is translated into the agent’s confidence report.

Confidence calibration
Confidence calibration cc 2 0; 0:75; 1f g denotes the probability that the agent assumes the correct

efference copy variance s
2

c for learning (c.f. Equations 6,7). cc ¼ 1 indicates that the subjectively

assumed efference-copy precision is equal to the true precision and cc ¼ 0, in contrast, indicates that

the assumed precision of the efference copy is different from the true one. That is, in the case

of cc ¼ 0:75, the agent more likely assumes the true precision of the efference copy but sometimes

fails to take it accurately into account during learning. As shown in Figure 1, we simulated behavior

of three agents that differed in their confidence calibration according to this idea.

Confidence report
In our model, the confidence report co 2 3; 2; 1f g (we simulate three levels as for efference copy

noise) reflects how certain the agent thinks its efference copy is, where 3 refers to ’completely cer-

tain’, and 1 to ’not certain’. In particular,

co¼

3; ifsc ¼ 5

2; ifsc ¼ 10

1; ifsc ¼ 20

8

>

<

>

:

(10)

That is, the confidence report is directly related to the subjective precision of the efference copy,

which, as shown above, depends to the agent’s level of confidence calibration.

Model with incomplete performance monitoring
We also applied a model that had no insight into the precision of its current predictions. The agent

was thus unaware of its trial-by-trial efference-copy noise sc and therefore relied on the average

value of sc, that is
P

scp scð Þ ¼ 12: As the model does not differentiate between precise and impre-

cise predictions but treats each prediction as average precise, it relies too much on imprecise predic-

tions and too little on precise ones.

Model without performance monitoring
Finally, we applied a model that was aware about its response noise but, because it completely

failed to consider its efference copy, it lacked insight into its trial-by-trial performance. In this ver-

sion, we had
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v¼
1

1

s
2
r

(11)

and m¼ i:

This model accounts for the expected variance in the feedback, but cannot differentiate between

trials in which the feedback is driven more by incorrect beliefs about the target versus incorrect exe-

cution. Therefore, it adjusts its beliefs too much following feedback primarily driven by execution

errors and too little following feedback primarily driven by incorrect beliefs.

Participants
The experimental study included 40 participants (13 males) whose average age was 25.8 years

(SD = 4.3) and whose mean handedness score (Oldfield, 1971) was 63.96 (SD = 52.09; i.e., most

participants were right-handed). Participants gave informed consent to the experiment and were

remunerated with course credits or 8 e per hour.

Task and procedure
Participants performed an adapted time-estimation task (Luft et al., 2014; Miltner et al., 1997) that

included subjective accuracy and confidence ratings (similar to Kononowicz et al., 2019;

Akdoğan and Balcı, 2017; Kononowicz and van Wassenhove, 2019). Participants were instructed

that their primary goal in this task is to learn to produce an initially unknown time interval. In addi-

tion, they were asked to predict the direction and magnitude of any errors they produced and their

confidence in those predictions. The time-estimation task is well established for ERP analyses e.g.

(Luft et al., 2014; Miltner et al., 1997), and has the advantages that it limits the degrees of free-

dom of the response, and precludes concurrent visual feedback that might affect performance evalu-

ation. The task consisted of four parts on each trial, illustrated in Figure 1B. After a fixation cross

lasting for a random interval of 300–900 ms, a tone (600 Hz, 200 ms duration) was presented. Partici-

pants’ task was to terminate an initially unknown target interval of 1504 ms from tone onset, by

pressing a response key with their left hand. We chose a supra-second duration to make the task suf-

ficiently difficult (Luft et al., 2014). Following the response, a fixation cross was presented for 800

ms. Participants then estimated the accuracy of the interval they had just produced by moving an

arrow on a visual analogue scale (too short – too long;±125 pixel, 3.15 ˚ visual angle) using a mouse

cursor with their right hand. Then, on a scale of the same size, participants rated their confidence in

this estimate (not certain – fully certain). The confidence rating was followed by a blank screen for

800 ms. Finally, participants received feedback about their performance with a red square (0.25˚

visual angle) placed on a scale identical to the accuracy estimation scale but without any labels. The

placement of the square on the scale visualized error magnitude in the interval produced, with

undershoots shown to the left and overshoots on the right side of the center mark, indicating the

correct estimate. Feedback was presented for only 150 ms to preclude eye movements. The interval

until the start of the next trial was 1500 ms.

The experiment comprised five blocks of 50 trials each, with self-paced rests between blocks. We

used Presentation software (Neurobs.) for stimulus presentation, event and response logging. Visual

stimuli were presented on a 4/3 17’’ BenQ Monitor (resolution: 1280 � 1024, refresh rate: 60 Hz)

placed at 60 cm distance from the participant. A standard computer mouse and a customized

response button (accuracy 2 ms, response latency 9 ms) were used for response registration.

Prior to the experiment, participants filled in demographic and personality questionnaires: Neu-

roticism and Conscientiousness Scales of NEO PI-R (Costa and McCrae, 1992) and the BIS/BAS

scale (Strobel et al., 2001), as well as a subset of the Raven, 2000 progressive matrices as an index

for figural-spatial intelligence. These measures were registered as potential control variables and for

other purposes not addressed here. Participants were then seated in a shielded EEG cabin, where

the experiment including EEG recording was conducted. Prior to the experiment proper, partici-

pants performed three practice trials.

Psychophysiological recording and processing
Using BrainVision recorder software (Brain Products, München, Germany) we recorded EEG data

from 64 Ag/AgCl electrodes mounted in an electrode cap (ECI Inc), referenced against Cz at a
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sampling rate of 500 Hz. Electrodes below the eyes (IO1, IO2) and at the outer canthi (LO1, LO2)

recorded vertical and horizontal ocular activity. We kept electrode impedance below 5 kW and

applied a 100 Hz low pass filter, a time constant of 10 s, and a 50 Hz notch filter. At the beginning

of the session we recorded 20 trials each of prototypical eye movements (up, down, left, right) for

offline ocular artifact correction.

EEG data were processed using custom Matlab (The MathWorks Inc) scripts (Frömer et al.,

2018) and EEGlab toolbox functions (Delorme and Makeig, 2004). We re-calculated to average ref-

erence and retrieved the Cz channel. The data were band pass filtered between 0.5 and 40 Hz. Ocu-

lar artifacts were corrected using BESA (Ille et al., 2002). We segmented the ongoing EEG from

�200 to 800 ms relative to feedback onset. Segments containing artifacts were excluded from analy-

ses, based on values exceeding ±150 mV and gradients larger than 50 mV between two adjacent sam-

pling points. Baselines were corrected to the 200 ms pre-stimulus interval (feedback onset).

The FRN was quantified in single-trial ERP waveforms as peak-to-peak amplitude at electrode

FCz, specifically as the difference between the minimum voltage in a window from 200 to 300 ms

post-feedback onset and the preceding positive maximum in a window from �100 to 0 ms relative

to the detected negative peak. To define the time windows for single-trial analyses of P3a and P3b

amplitudes, we first determined the average subject-wise peak latencies at FCz and Pz, respectively,

and exported 100 ms time windows centered on the respective latencies. Accordingly, the P3a was

quantified on single trials as the average voltage within an interval from 330 to 430 ms after feed-

back onset across all electrodes within a fronto-central region of interest (ROI: F1, Fz, F2, FC1, FCz,

FC2, C1, Cz, C2). P3b amplitude was quantified in single trials as the average voltage within a 416–

516 ms interval post-feedback across all electrodes within a parietally-focused region of interest

(ROI: CP1, CPz, CP2, P1, Pz, P2, PO3, POz, PO4).

Analyses
Outlier inspection of the behavioral data identified one suspicious participant (average RT >10 s)

and one trial each in four additional participants (RTs > 6 s, 0.4% of data of remaining participants).

These data were excluded from further analyses. We computed two kinds of prediction errors

(Figure 3A): SPE was determined as the absolute difference between predicted and actual interval

length: |Prediction – Feedback|. RPE was computed as the difference between the absolute pre-

dicted error and the absolute actual error as revealed by feedback: |Prediction| – |Feedback|. We

quantified confidence calibration as each participant’s correlation of confidence and SPE (absolute

deviation of the prediction from the actual outcome) across all trials, controlling for average error

magnitude per block to account for shared changes in our confidence calibration measure with per-

formance. To ease interpretation, we sign-reversed the correlations, such that higher values corre-

spond to higher confidence calibration.

Statistical analyses were performed by means of linear mixed models (LMMs) using R

(R Development Core Team, 2014) and the lme4 package (R Package, 2014). We chose LMMs,

similar to linear multiple regression models, as they allow for parametric analyses of single-trial

measures. Further, LMMs are robust to unequally distributed numbers of observations across partici-

pants, and simultaneously estimate fixed effects and random variance between participants in both

intercepts and slopes. For all dependent variables, full models, including all predictors, were

reduced step-wise until model comparisons indicated significantly decreased fit.

We report model comparisons and fit indices: Akaike Information Criterion (AIC) and Bayesian

Information Criterion (BIC), which decrease with improving model fit. Random effect structures were

determined using singular value decomposition. Variables explaining zero variance were removed

from the random effects structure (Bates et al., 2015; Matuschek et al., 2017).

Prior to the analyses, error magnitude, RPE and SPE were scaled from ms to seconds and confi-

dence and block were also scaled to a range of ±1 for similar scaling of all predictors. Furthermore,

block, error magnitude, confidence, and SPE were centered on their medians for accurate intercept

computation. RPE was not centered, as zero represents a meaningful value on the scale (predicted

and actual error magnitude are the same), and positive and negative values are qualitatively different

(negative and positive values represent outcomes that are, respectively, worse or better than

expected). Model formulas are reported in the respective tables. Fixed effects are visualized using

the effects package (Fox and Weisberg, 2019).
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Data availability
The datasets generated and analyzed during the current study are available under https://github.

com/froemero/Outcome-Predictions-and-Confidence-Regulate-Learning (copy archieved at swh:1:

rev:e8bfacf8fdb8126aade59581b98616b4f2fae7b3; Frömer, 2021).

Code availability
Scripts for all analyses are available under https://github.com/froemero/Outcome-Predictions-and-

Confidence-Regulate-Learning.
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Frömer R, Maier M, Abdel Rahman R. 2018. Group-Level EEG-Processing pipeline for flexible single Trial-Based
analyses including linear mixed models. Frontiers in Neuroscience 12:48. DOI: https://doi.org/10.3389/fnins.
2018.00048, PMID: 29472836
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