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Abstract

Recent discussions on the reproducibility of task-related functional magnetic resonance imaging
(fMRI) studies have emphasized the importance of power and sample size calculations in fMRI
study planning. In general, statistical power and sample size calculations are dependent on the
statistical inference framework that is used to test hypotheses. Bibliometric analyses suggest
that random �eld theory (RFT)-based voxel- and cluster-level fMRI inference are the most com-
monly used approaches for the statistical evaluation of task-related fMRI data. However, general
power and sample size calculations for these inference approaches remain elusive. Based on the
mathematical theory of RFT-based inference, we here develop power and positive predictive
value (PPV) functions for voxel- and cluster-level inference in both uncorrected single test and
corrected multiple testing scenarios. Moreover, we apply the theoretical results to evaluate the
sample size necessary to achieve desired power and PPV levels based on an fMRI pilot study.

Introduction

A fundamental goal of task-related functional magnetic resonance imaging (fMRI) is to iden-
tify the cortical correlates of cognition. An approach routinely used to achieve this goal is
mass-univariate null hypothesis signi�cance testing in the framework of the general linear model
(Friston et al., 1994; Poline and Brett, 2012; Cohen et al., 2017). In the recent debate on the
reproducibility of research �ndings in the life sciences, the statistical practices of fMRI research
have once again taken centre stage in the community discourse (e.g., Eklund et al., 2016; Mum-
ford et al., 2016; Poldrack et al., 2017; Eklund et al., 2019; Flandin and Friston, 2019). Here, a
particular emphasis has been on statistical power and its relation to typical sample sizes in fMRI
group studies (Button et al., 2013; Guo et al., 2014; Szucs and Ioannidis, 2016; Cremers et al.,
2017; Geuter et al., 2018; Turner et al., 2018). In task-related fMRI, statistical power is broadly
de�ned as the probability of detecting cortical activation, if this activation is indeed present. In
general, statistical power and, consequently, methods for computing the sample sizes necessary
to achieve desired levels of power depend on both the statistical inference framework used and
assumptions about the expected cortical activation.

A prominent statistical inference framework for null hypothesis signi�cance testing in fMRI
research is based on random �eld theory (RFT) (Worsley, 2007; Friston, 2007; Nichols, 2012;
Ostwald et al., 2018). RFT-based fMRI inference is a parametric framework that allows for
controlling the multiple testing problem inherent in the mass-univariate approach. Technically,
this framework rests on analytical approximations to the exceedance probabilities of topolog-
ical features of data roughness-adapted random �eld null models. RFT-based fMRI inference
is implemented in the two major data analysis software packages used by the neuroimaging
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community, namely, Statistical Parametric Mapping (SPM) and the Functional Magnetic Reso-
nance Imaging of the Brain (FMRIB) Software Library (FSL). It encompasses up to �ve forms
of statistical testing: uncorrected and corrected voxel-level inference, uncorrected and corrected
cluster-level inference, and set-level inference (Friston et al., 1996). With the exception of set-
level inference, all forms are routinely reported in the functional neuroimaging literature. More
speci�cally, bibliometric analyses suggest that RFT-based fMRI inference, especially corrected
cluster-level inference, accounts for approximately 70% of published task-related human fMRI
studies (Supplement S.1).

In light of the widespread use of RFT-based inference, previously proposed approaches for
the calculation of power and sample sizes in fMRI research have a number of shortcomings.
First and foremost, most previously proposed frameworks are not well aligned with the theory
of RFT-based fMRI inference (e.g.. Desmond and Glover, 2002; Mumford and Nichols, 2008;
Durnez et al., 2016), rendering them non-applicable for the most commonly employed forms of
fMRI inference. Second, the framework previously proposed by Hayasaka et al. (2007) and Joyce
and Hayasaka (2012) that is aligned with the theory of RFT-based fMRI inference only addresses
voxel-level and not cluster-level inference. Moreover, this framework does not address the variety
of power types that arise in multiple testing scenarios and thus remains imprecise with respect
to the interpretation of its ensuing power and sample size values. Third, all previous frameworks
assume that under the alternative hypothesis, cortical activation is expressed either in a known
region of interest or over the entire cortex. Notably, neither of these assumptions necessarily
re�ects common intuitions of neuroimaging researchers. Finally, no previous framework allows
for the necessary sample sizes to be derived based on a desired positive predictive value (PPV),
a novel statistical marker for the quality of empirical research that has risen to prominence over
the last decade (Wacholder et al., 2004; Ioannidis, 2005; Heston and King, 2017; Colquhoun,
2019).

With the current work, we address these shortcomings and report on a novel framework for
power, PPV, and sample size calculations in RFT-based fMRI inference. We �rst consider the
framework's theoretical foundations by brie�y reviewing the notion of power in single test sce-
narios, the concepts of minimal and maximal power in multiple testing scenarios, the foundations
of the PPV, and the notion of partial alternative hypotheses. We then discuss the RFT-based
power and PPV functions at both the voxel and cluster level in both the uncorrected single test
and corrected multiple testing scenario and discuss their parametric dependencies. In a third
step, we apply the proposed framework in a prospective power analysis based on a pilot fMRI
data set and evaluate the sample sizes necessary to obtain desired power and PPV levels. We
close with a discussion of some commonalities and di�erences between the proposed framework
and previously proposed approaches and some potential avenues for future research. Through-
out, we limit our scope to the evaluation of contrasts of �rst-level GLM parameter estimates
(COPEs) at the group level using T -statistics, the approach most commonly used for group-level
fMRI analyses. The technical foundations of our framework are detailed in Supplement S.2 and
the Methods section. All data and software used are available from https://osf.io/xjcg4/.

Results

Theoretical foundations

Power functions

In single test scenarios, such as testing for the activation of a single voxel, two types of errors
can occur: the test may reject the null hypothesis when it is in fact true, referred to as a Type
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I error, and the test may not reject the null hypothesis when in fact the alternative hypothesis
is true, referred to as a Type II error. From a frequentist perspective, Type I and Type II
errors are associated with their probabilities of occurrence, denoted α and 1 − β, respectively,
and commonly referred to as Type I and Type II error rates. The complementary probability
of a Type II error, i.e., the probability rejecting the null hypothesis if the alternative hypothesis
is true, is referred to as the power β of a test. A fundamental aim of test construction is to
maintain low Type I and Type II error rates. To this end, a desired Type I error rate is usually
selected �rst by de�ning a test signi�cance level α′, ensuring a Type I error rate of at most α′.
For many commonly used tests, the power at a �xed signi�cance level α′ can then be shown to
be a function β(n, d) of an e�ect size measure d and the sample size n. An often recommended
approach in research study design is calculating the necessary sample size n for which, under the
assumption of a �xed e�ect size d, the power reaches a desirable level, such as β(n, d) = 0.8.

Minimal and maximal power functions

In multiple testing scenarios, such as simultaneously testing for cortical activation over many
voxels, a Type I or a Type II error may occur for each of the individual tests involved, inducing
a variety of Type I and Type II error rates. For example, commonly considered Type I error
rates in fMRI research are the family-wise error rate (FWER), de�ned as the probability of
one or more false rejections of the null hypothesis, and the false discovery rate (FDR), de�ned
as the expected proportion of Type I error among the rejected null hypotheses. Classically,
the FWER has been the prime target for Type I error rate control in fMRI research. The
prevalence of FWER control derives from the fact that the FWER can be e�ciently controlled
using maximum statistic-based procedures (e.g., Roy, 1953; Roy and Bose, 1953), which were at
the centre of the early developments of RFT-based fMRI inference (Friston et al., 1991; Worsley
et al., 1992; Friston et al., 1994). Maximum statistic-based multiple testing procedures allow the
FWER to be controlled using a family-wise error signi�cance level α′FWE. Just as the multiplicity
of statistical tests in multiple testing scenarios induces a variety of Type I error rates, it also
induces a variety of Type II error rates and hence power types. Power types commonly considered
in multiple testing are minimal power, de�ned as the probability of one or more correct rejections
of the null hypothesis, and maximal power, de�ned as the probability of correctly rejecting all
false null hypotheses (e.g., Dudoit et al., 2003). When calculating the sample sizes necessary
for desired power levels in Type I error rate-controlled multiple testing scenarios, it is hence
essential to explicate the power type of interest. As RFT-based fMRI inference naturally lends
itself to the evaluation of the minimal and maximal power functions βmin(n, d) and βmax(n, d),
respectively, we focus on these power types in the current work.

PPV functions

In recent discussions, studies with low power have been related to high probabilities of the
claimed e�ects to be false positives (cf. Ioannidis, 2005; Button et al., 2013). This relationship
is not inherent in classical frequentist test theory in which Type I and Type II error rates are
conceived independently. Instead, the dependency of Type I error rates on Type II error rates,
and hence power, arises in the context of a probabilistic model that assigns probabilities to the
null hypothesis of being either true or false and the ensuing concept of a test's PPV (Wacholder
et al., 2004) (for an equivalent formulation in terms of false positive risk, see Colquhoun (e.g.
2017, 2019)). A test's PPV, denoted here by ψ, is de�ned as the probability of the null hypothesis
being false given that the test rejects the null hypothesis. As discussed in Supplement S.2, the
PPV depends on both the Type I error rate and the prior hypothesis parameter π ∈ [0, 1], which
represents the prior probability of the alternative hypothesis being true. For a constant Type I
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error rate and prior hypothesis parameter, the PPV is a function of the test's power and, similar
to power, a function ψ(n, d) of the e�ect and sample sizes. Moreover, in multiple testing scenarios,
such PPV functions can be generalized to minimal and maximal PPV functions ψmin(n, d) and
ψmax(n, d) by substitution of the respective minimal and maximal power functions. Similar to
power functions, single test and multiple testing PPV functions allow �nding the sample size n for
which, at a given e�ect size d, the PPV function reaches a desirable level, such as ψ(n, d) = 0.8.

Partial alternative hypothesis scenarios

Previous approaches to the evaluation of power in fMRI inference have typically relied on
the assumption that the experimental e�ect of interest is expressed in a known cortical region of
interest, i.e., single test scenarios, (e.g., Desmond and Glover, 2002; Mumford and Nichols, 2008),
or in multiple testing scenarios, across the entire cortical volume (e.g., Hayasaka et al., 2007;
Joyce and Hayasaka, 2012). While there are situations in which prospective power analyses are
reasonable under these assumptions, we here suggest that the evaluation of necessary samples
sizes may often be desired although neither the precise location of an expected activation nor
the activation of the entire cortical sheet is reasonably assumed. To this end, we propose to
parameterize the power, PPV, and sample size calculations in multiple testing scenarios with a
partial alternative hypothesis parameter λ ∈ [0, 1], which describes the assumed proportion of
activated brain volume. Intuitively, for example, λ = 0.1 corresponds to the assumption that 10%
of the cortex is truly activated. Formally, λ corresponds to the continuous spatial generalization
of the alternative hypotheses ratio of multiple testing scenarios, as discussed in Supplement S.2.
Note that if λ = 0, the minimal and maximal power are necessarily identically zero, as there are
no true activations. Equivalently, if λ = 1, the FWER is necessarily zero, as there are no null
activations.

RFT-based fMRI inference power and PPV functions

Based on the theoretical considerations above and the mathematical theory of RFT-based fMRI
inference, it is possible to develop a set of power and PPV functions that are well-aligned with
the RFT-based inference framework (Methods). In the following, we �rst discuss the power and
PPV functions β(n, d) and ψ(n, d) for voxel- and cluster-level inference in single test scenarios
for �xed signi�cance levels α′. We then consider the power and PPV functions βλmin(n, d),
βλmax(n, d), ψλmin(n, d), and ψλmax(n, d) for voxel- and cluster-level inference for �xed family-wise
error signi�cance levels α′FWE and for �xed partial alternative hypothesis parameters λ. Note
that these functions form the essential prerequisites for calculating the sample sizes necessary to
achieve desired levels of power or PPV.

The single test scenario: uncorrected voxel- and cluster-level inference

Figure 1A depicts the power functions β(n, d) for voxel- and cluster-level inference in the un-
corrected single test scenario at a signi�cance level of α′ = 0.05. For voxel-level inference and
medium e�ect sizes of d = 0.4 to d = 0.6, sample sizes of n = 20 to n = 40 are required to
achieve power levels of β(n, d) = 0.8. For cluster-level inference and similar e�ect sizes, slightly
larger sample sizes of n = 25 to n = 40 are required to achieve similar power levels. Note that in
contrast to voxel-level inference, cluster-level inference depends on the value of a cluster-de�ning
threshold (CDT). For the cluster-level power function depicted in Figure 1A, the CDT was set
to u = 4.3, corresponding to a p-value of 0.001 at ν = 9 degrees of freedom.

Naturally, varying the CDT impacts power: as shown in the right panel of Figure 1B, increas-
ing the CDT at a constant sample size decreases power. This relationship is intuitive as, all else
being equal, increasing the CDT will mask out an increasing number of voxels and hence reduce
the chance of detecting a truly activated cluster. Similarly, and more fundamentally, the signi�-
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Figure 1. Power and PPV functions for voxel- and cluster-level inference in the uncorrected single test scenario.
(A) Power functions for uncorrected voxel-level and cluster-level inference for a given sample size n and e�ect
size d. For the cluster-level power function, a CDT parameter of u = 4.3 (p = 0.001 for ν = 9 degrees of freedom)
was used. (B) Power dependency on the signi�cance level α′ and the CDT value u for voxel- and cluster-level
inference, respectively. (C) PPV functions for uncorrected voxel-level and cluster-level inference for a given e�ect
size d and sample size n for the prior hypothesis parameter set to π = 0.2. (D) Prior parameter dependencies of
the voxel- and cluster-level PPV functions for a �xed e�ect size of d = 0.5. Dots represent the evaluated sample
sizes. For implementational details, please see rftp_�gure_1.m.

cance level impacts power for both voxel- and cluster-level inference: as depicted for voxel-level
inference in the left panel of Figure 1B, decreasing the signi�cance level decreases power. For
all power curves shown in Figure 1B, the e�ect size was set to d = 0.5. For this medium e�ect
size, a sample size of approximately n = 70 is required to achieve a power of β(n, d) = 0.8 at the
uncorrected voxel-level signi�cance level of α′ = 0.001, which is sometimes used for inference in
empirical studies. Notably, neither uncorrected voxel-level inference nor cluster-level inference
is a�ected by the search space's resel volumes that relate to the statistical map's roughness:
the RFT-based power function of the voxel-level height statistic (cf. eq. (26)) is identical to
the power function of a one-sample T -test and is hence independent of the search space's resel
volumes per se. The power function of the cluster-extent statistic (cf. eq. (29)), however, is
dependent on the expected cluster extent and hence potentially susceptible to variations in the
statistical map's roughness. However, as the third-order resel volume a�ects both the expected
volume of clusters and the expected number of clusters, and for the evaluation of the expected
cluster extent, RFT-based fMRI inference assumes the independence of these expectations (cf.
eq. (12)), resel volume - and hence roughness - independence ensues.

Figure 1C depicts the PPV functions for voxel- and cluster-level inference in the uncorrected
single test scenario as a function of e�ect size d and sample size n and for a prior hypothesis
parameter of π = 0.2. Here, medium e�ect sizes similar to those of the power functions require
sample sizes on the order of n = 10 to n = 30 and n = 15 to n = 35 to achieve PPV levels
of ψ(n, d) = 0.8 for voxel- and cluster-level inference, respectively. From the de�nition of the
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Figure 2. Minimal and maximal power and PPV functions for voxel- and cluster-level inference in the corrected
multiple testing scenario. (A) Minimal and maximal power and PPV functions for corrected voxel-level inference
for a given sample size n, e�ect size d, and partial alternative hypothesis parameter λ (�rst three columns).
The fourth column depicts the corrected voxel-level minimal and maximal PPV functions for a prior hypothesis
parameter of π = 0.2. (B) Minimal and maximal power and PPV functions for corrected cluster-level inference
for a given sample size n, e�ect size d, and partial alternative hypothesis parameter λ (�rst three columns). The
fourth column depicts the corrected cluster-level minimal and maximal PPV functions for a prior hypothesis
parameter of π = 0.2. All cluster-level power functions were evaluated for a CDT of u = 4.3, and all voxel- and
cluster-level power and PPV functions were evaluated for an exemplary resel volume set of R0 = 6, R1 = 33,
R2 = 354, and R3 = 705. For further implementational details, please see rftp_�gure_2.m.

PPV function ψ(n, d) as a monotonic transformation of a power function β(n, d) (cf. eq. (39)), it
follows that the parameter dependencies of the voxel- and cluster-level power functions carry over
to the respective PPV functions. Naturally, PPV functions are additionally strongly dependent
on the value of the prior hypothesis parameter π: as shown in Figure 1D, low prior hypothesis
parameter values result in much larger sample sizes necessary to achieve desired PPV levels,
while higher prior hypothesis parameter values have the opposite e�ect.

The multiple testing scenario: corrected voxel- and cluster-level inference

Figure 2A depicts maximal and minimal power and PPV functions for corrected voxel-level
inference at a signi�cance level of α′FWE = 0.05. Speci�cally, the two leftmost panels of Figure 2A
depict the minimal and maximal power functions βλmin(n, d) and βλmax(n, d) for corrected voxel-
level inference and a partial alternative hypothesis parameter of λ = 0.1. Achieving a minimal
power level of βλmin(n, d) = 0.8 for a medium e�ect size of d = 0.5 requires sample sizes in
the range of n = 15 to n = 30. To achieve similar levels of maximal power βmax(n, d), the
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same e�ect size requires sample sizes of n = 200 to n = 500. As shown in the upper three
panels of Figure 2A, increasing the partial alternative hypothesis parameter to λ = 0.2 and
λ = 0.3 decreases sample sizes necessary to achieve a minimal power of βλmin(n, d) = 0.8. For
maximal power, such a decrease is not observed. Intuitively, this relationship can be understood
as follows: increasing the proportion of cortical activation increases the chances of detecting
activation at a single cortical location (minimal power) but not of detecting activations at all
locations (maximal power). Finally, for a prior hypothesis parameter of π = 0.2, PPV levels
of ψλmin(n, d) = ψλmax(n, d) = 0.8 can be achieved with e�ect and sample sizes largely similar
to those for minimal and maximal power, as depicted for λ = 0.3 in the rightmost column of
Figure 2A.

Figure 2B depicts maximal and minimal power and PPV functions for corrected cluster-level
inference at a signi�cance level of α′FWE = 0.05. As for voxel-level inference, the leftmost panels
of Figure 2B depict the minimal and maximal power functions for a partial alternative hypothesis
parameter of λ = 0.1. Here, achieving a minimal power of βλmin(n, d) = 0.8 for a medium e�ect
size of d = 0.5 requires sample sizes in the range of n = 10 to n = 20, while achieving a maximal
power of βλmax(n, d) = 0.8 at the cluster level requires sample sizes of n = 30 to n = 50. As for
corrected voxel-level inference, increasing the partial alternative hypothesis parameter to λ = 0.2
and λ = 0.3 decreases the necessary sample sizes for minimum power but not for maximum power.
Finally, for a prior parameter of π = 0.2, ψλmin(n, d) = ψλmax(n, d) = 0.8 can also be achieved
at the cluster level with e�ect and sample sizes largely similar to those for power (Figure 2B,
rightmost column).

Naturally, the minimal and maximal power and PPV functions of corrected voxel- and cluster-
level inference exhibit a number of additional parametric dependencies (Figure 3). First, as shown
in Figure 3A, similar to the patterns observed for their uncorrected counterparts, the minimal
and maximal power functions of corrected voxel- and cluster-level inference are a�ected by the
desired signi�cance level α′FWE, with lower values of α′FWE implying lower power. Second, and
in contrast to the patterns observed for their uncorrected counterparts, the power functions in
the corrected scenario are dependent on the data roughness, as expressed by a statistical map's
resel volumes. Figure 3B visualizes this in�uence as parameterized by a roughness parameter r,
where for r = 1, the resel volumes are set as in Figure 2, while for r = 0.5 and r = 2 to r = 5,
they are decreased or increased by the respective factor. Notably, for both voxel- and cluster-
level inference, changes in the data roughness have opposite e�ects on minimal and maximal
power: for minimal power, an increase in roughness r results in an increase of βλmin(n, d), while
for maximal power, an increase in roughness r results in a decrease of βλmax(n, d). The e�ect
of increased roughness on minimal power is familiar from the FWER-controlling features of the
expected Euler characteristic (EC) (Adler, 1981; Worsley et al., 1996): the higher the roughness
of the statistical �eld, the higher the probability for the maximum of the statistical �eld to exceed
a given value, and hence the lower the statistical signi�cance of an isolated peak. Because this
relationship is a property of the maximum statistic Tmax, it is also evident in the case of minimal
power. Intuitively, as the roughness of the statistical �eld can be viewed as a measure of the voxel
height statistics' spatial independence, detecting a single true alternative hypothesis is easier if
it is not correlated with neighbouring height statistics. In contrast, maximal power increases
with decreasing roughness and hence increasing smoothness. This association is intuitive: the
smoother the statistical �eld is, the stronger the spatial covariation of the statistics. Thus, if
a true alternative hypothesis is detected at one location, the other true alternative hypotheses
are also likely to be detected (if, as in the current case, it is assumed that the area of activation
corresponds to a contiguous set). As in the uncorrected cluster-level scenario, increasing the
value of the CDT decreases power at a constant e�ect size for both minimal and maximal power
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Figure 3. Parametric dependencies of minimal and maximal power and PPV functions for voxel- and cluster-
level inference in the corrected multiple tesing scenario. Dots depict the evaluated sample sizes, and a medium
e�ect size of d = 0.5 is considered for all plots. (A) Signi�cance level dependencies of minimal and maximal
power (λ = 0.1, u = 4.3). (B) Resel volume dependencies of minimal and maximal power (λ = 0.1, u = 4.3). r
denotes the scalar multiple of the exemplary resel volume set of R0 = 6, R1 = 33, R2 = 354, and R3 = 705.
(C) Minimal and maximal cluster-level power dependency on the CDT value u. (D) Prior hypothesis parameter
dependencies of minimal and maximal PPV functions at the cluster level. For implementational details, please
see rftp_�gure_3.m.

(Figure 3C) because the probability of detecting one or all locations at which the alternative
hypothesis is true decreases with the masking of an increasing number of voxels. Finally, the
prior hypothesis parameter π also strongly a�ects PPV levels in the multiple testing scenario, as
exempli�ed in Figure 3D for the cluster-level minimal and maximal PPV functions.

Exemplary application

The power and PPV functions presented above imply the sample sizes necessary to achieve
desired power and PPV levels over a broad range of possible e�ect sizes. To demonstrate the
practical value of these functions, we �nally consider their application in the concrete scenario
of determining the sample size necessary to achieve power and PPV levels of 0.8 for a single
e�ect size estimate. To this end, we re-analysed fMRI data from the �rst 10 participants in a
previously reported perceptual decision-making study in which the amount of visual evidence for
a presented stimulus to depict a face or a car was varied (Ostwald et al., 2012; Georgie et al.,
2018). At the group level, contrasting fMRI activity levels between high and low visual evidence
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Figure 4. Exemplary application of the RFT-based power, PPV, and sample size calculation framework. (A)
The upper panel depicts the results of a perceptual decision-making pilot study with n = 10 participants for
contrasting perceptual choices based on high and low visual sensory evidence. The T-values from the identi�ed
cluster in the left medial frontal gyrus were averaged to obtain a raw e�ect size estimate, which was then adjusted
based on the e�ect size bias estimates reported in Figure 7 of Geuter et al. (2018) and reproduced in the lower
subpanel of panel (A). (B) Sample size calculations for voxel-level minimal and maximal power and PPV based
on the e�ect size estimates of the pilot fMRI study. (C) Sample size calculations for cluster-level minimal and
maximal power and PPV based on the e�ect size estimates of the pilot fMRI study. For implementational details,
please see rftp_�gure_4.m.

revealed a cluster of activity in the left medial frontal gyrus, as shown in the upper panel of
Figure 4A (for further details about the experimental and data-analytical procedures, please
see Supplement S.5). Our aim was to use the e�ect size estimate derived from this cluster to
calculate the sample sizes necessary to achieve minimal and maximal power and PPV levels of
0.8 for corrected voxel- and cluster-level inference at a signi�cance level of α′FWE = 0.05, a partial
alternative hypothesis parameter of λ = 0.1, and a prior hypothesis parameter of π = 0.2. To
this end, we evaluated the average T-values of the cluster, yielding T = 4.65, which translates
into an e�ect size estimate of d̂ = 4.65/

√
10 = 1.47. However, it is well known that e�ect size

estimates resulting from the thresholding of mass-univariate statistical parametric maps exhibit
biases (e.g., Vul et al., 2009; Poldrack et al., 2017). To correct our e�ect size estimate for this
bias, we capitalized on recent results by Geuter et al. (2018), which are depicted in the lower
panel of Figure 4A. Speci�cally, using task-related fMRI data from the Human Connectome
Project 500 (Van Essen et al., 2013), Geuter et al. (2018) estimated the e�ect size bias exhibited
by activations detected in random data subsets of 10 to 100 participants from the approximately
500 participants. As reported in Figure 7A of Geuter et al. (2018) and visualized in the lower
panel of Figure 4A, this e�ect size bias is most severe for small data subsets and decreases
with increasing data subset size. For a data subset of n = 10, the e�ect size bias amounts to
approximately ∆d = 1. We thus used this empirically validated bias estimate to correct our
e�ect size estimate to d̂c = d̂ − ∆d = 0.47. Using the power and PPV functions discussed in
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the previous section, and the sample size calculation algorithms Algorithm A2 and Algorithm
A3 documented in Supplement S.6, we then obtained the following results: at the voxel level,
sample sizes of n = 19 and n = 374 are required to achieve minimal and maximal power levels
of 0.8, respectively (Figure 4B). At the cluster level, sample sizes of n = 12 and n = 48 are
required to achieve minimal and maximal power levels of 0.8 (Figure 4C), respectively. For all
testing scenarios considered and for the current parameter settings, slightly smaller sample sizes
are required to achieve PPV levels of 0.8.

Discussion

In summary, we have developed power and PPV functions for RFT-based fMRI inference,
which represents one of the mainstays of task-related fMRI data analysis. Further, we have
demonstrated, how these functions can be used to determine the minimal sample sizes necessary
to achieve desired power and PPV levels in study planning. Based on our example and its
implementation in the MATLAB function rftp_�gure_4.m, interested users may readily adapt
the procedures described herein for performing power, PPV, and sample size calculations in
fMRI study planning. In the following, we brie�y sketch the relation of the current framework to
related approaches in the literature, discuss some potential avenues for future re�nements of the
approach, and close with some general remarks about statistical testing and power calculations
in fMRI research.

The current framework can be thought of as a direct extension of the work by Hayasaka et al.
(2007) and Joyce and Hayasaka (2012), generalizing the results presented therein to the cluster
level and carefully distinguishing between uncorrected and corrected scenarios and the multiple
power types thereby induced. As such, the current framework comprises region of interest-
based approaches proposed by Desmond and Glover (2002) and Mumford and Nichols (2008)
and implied in the discussions by Friston (2012) and Lindquist et al. (2013) as special cases.
Speci�cally, in terms of its power function, a region of interest-based approach corresponds to
uncorrected inference at the voxel level, i.e., a power evaluation for a one-sample T -test, with the
di�erence that in typical region of interest-based approaches, voxel height statistics are spatially
averaged over a set of voxels. Another power calculation framework that has recently been
popularized is the approach of Durnez et al. (2016). This framework rests on a testing procedure
that considers local maxima of voxel height statistics above a threshold. Under the model by
Durnez et al. (2016), these local maxima are thought to be the outcome of a mixture distribution,
comprising realizations of a null hypothesis exponential distribution and an alternative hypothesis
Gaussian distribution. While the test procedure itself is not explicitly described, the apparent
idea is to reject the null hypothesis of no activation at the location of the local maximum
based on a set of arbitrary selected critical values (Durnez et al., 2016, Section 3.3). Based on
parameter estimates for the alternative hypothesis mixture component and the selected critical
value, Durnez et al. (2016) calculate power and sample sizes. While an interesting approach
in its own right, the method by Durnez et al. (2016) relates to statistical models and testing
procedures that are speci�c to the power calculation approach by Durnez et al. (2016) and that
are not routinely used in fMRI data analysis.

The current work implies some potential avenues for further research with the aim of im-
proving power, PPV, and sample size calculations for fMRI inference. First, RFT-based fMRI
inference itself may be further re�ned, thus entailing an optimization of the power and PPV
framework discussed herein. For example, the approximations to the cluster-level test statistic
distributions remain to be based on the Gaussian random �eld approximations by Friston et al.
(1994), while newer results for T - and F -�elds are available (e.g., Cao, 1999). Similarly, the
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notion of resel volumes has been largely superseded by the concept of Lipschitz-Killing curva-
tures (e.g., Taylor and Worsley, 2007), a theoretical development that has yet to be considered
in standard discussions of RFT-based fMRI inference. Second, it has been observed previously
as well as by us that some of the power functions of the RFT-based inference framework can
behave non-monotonically outside of practically relevant parameter regimes (Hayasaka et al.,
2007). Therefore, it may be desirable to further pursue mathematical analysis of the RFT-based
exceedance probability function approximations and to study their analytic behaviour across pa-
rameter regimes. Finally, with respect to the PPV, it may be desirable to diminish the degree of
subjectivity involved in selecting the prior hypothesis parameter. Potential avenues with which
to achieve this goal include basing PPV calculations on empirical priors estimated from fMRI
pilot data and considering the PPV in the more general setting of the false positive risk (e.g.,
Colquhoun, 2017, 2019).

As emphasized throughout, statistical power and PPVs are rooted in statistical testing, i.e.,
the dichotomization of the uncertainty-imbued results of statistical inference. As such, statistical
testing, power and PPV calculations, as well as deriving the sample sizes necessary to achieve
desired power and PPV levels, always generate simpli�ed answers to complex scienti�c questions
(e.g., Wasserstein et al., 2019). Such simpli�ed answers may not always be desired in a scienti�c
context, as indicated by recent initiatives to share unthresholded statistical parametric maps
(Gorgolewski et al., 2015). Stated di�erently, while many researchers have argued that abandon-
ing statistical testing based on arbitrary signi�cance thresholds may be a promising avenue for
improving scienti�c inference, few have argued that the entailing abandonment of power analy-
ses may have similar e�ects. While we share the hope that the fMRI community will abandon
statistical testing in the long run, we here have provided power, PPV, and sample calculations
applicable to the widely used RFT-based fMRI inference procedures that can be adopted in the
meantime.

Methods

Here, we develop the power and PPV functions reported in the Results section. For a com-
prehensive review of RFT-based fMRI inference from �rst principles and with a particular focus
on its SPM implementation, please refer to Ostwald et al. (2018). For a comprehensive review
of the underlying test theory, please refer to Supplement S.2.

Probabilistic model

Standard fMRI group analysis in the framework of the GLM is based on a two-level summary
statistics approach. At the �rst-level, participant-speci�c MRI time series are analysed using
voxel-wise convolution-based GLMs. The resulting participant- and voxel-speci�c COPEs are
the data used for the second-level, continuous-space, discrete-data point model of RFT-based
fMRI inference,

P (Y1(x), ..., Yn(x)) , x ∈ S ⊆ R3, (1)

where Yi(x) denotes the random variable that models the COPE of the ith of n study participants
at location x in the continuous three-dimensional search space S. In its structural form, the joint
distribution of these random variables is de�ned by

Yi(x) = µ(x) + σZi(x), x ∈ S ⊂ R3, i = 1, ..., n, (2)

where µ(x) is an unknown value of a space-dependent parameter function µ : R3 → R, σ > 0 is an
unknown standard deviation parameter, and Zi(x) is a Z-�eld modelling observation error. The
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Zi(x), i = 1, ..., n are assumed to be independent and of identical smoothness. Observed COPE
data sets are assumed to represent a lattice approximation to eq. (2) and can be represented by
the discrete-space, discrete-data point model

Yiv = µv + σZiv for i = 1, ..., n, and v = 1, ...,m, (3)

where µv := µ(xv) denotes the value of the parameter function µ at voxel location xv, and Ziv :=
Zi(xv) denotes the ith Z-�eld random variable located at voxel location xv. In the following, we
denote the family of random variables Yiv, i = 1, ..., n, v = 1, ...,m by Y := (Yiv)i=1,...,n,v=1,...,m,
we summarize the values of the space-dependent e�ect size parameter function in a vector µ :=
(µ1, ..., µm)T ∈ Rm, and we denote the ensuing cardinality of the discretized second-level random
�eld model and, equivalently, the dimensionality of an observed COPE data set, by k := nm.

Statistics

RFT-based fMRI inference is based on a set of statistics that map k-dimensional COPE data
sets onto lower-dimensional outcome spaces. Evaluating the probability of observed values of
these statistics under the random �eld model of eq. (1) then allows for testing null hypotheses
at desired levels of signi�cance. To this end, RFT-based fMRI inference distinguishes single
test scenarios, commonly referred to as uncorrected inference, based on uncorrected p-values,
and multiple testing scenarios, commonly referred to as corrected inference, based on corrected
p-values. Depending on the test scenario and the type of statistic, a speci�c form of inference
ensues.

In the single test scenario and at the voxel level, the statistics of interest are the voxel height
statistics

Tv(Y ) : Rk → R, y 7→ Tv(Y = y) :=
√
nȳv/sv, for v = 1, ...,m, (4)

where ȳv and sv denote the sample mean and sample standard deviation of the vth voxel data,
respectively. The voxel height statistics thus correspond to standard T -statistics and form so-
called statistical parametric maps of T -statistics, sometimes denoted SPM{T}. Note that because
under the T -statistic the Gaussian �elds implied by (3) are projected onto a single T -�eld, the
probabilities of statistics under the probabilistic model of eq. (1) are commonly expressed with
respect to T -�elds.

In the single test scenario and at the cluster level, the statistics correspond to the cluster
extent statistics

Kj(Y ) : Rk → R, y 7→ Kj(Y = y) for j = 1, ..., c, (5)

where Kj(Y ) denotes the extent of the jth of c clusters within an excursion set de�ned by a
CDT u ∈ R. The test statistics Kj(Y ), j = 1, ..., c subsume all data-analytical steps that project
a COPE data set onto the extents of clusters within the excursion set of a statistical parametric
map. These steps comprise but are not limited to thresholding a statistical parametric map at
level u, evaluating the entailing clusters using a numerical connectivity scheme, and measuring
the extent of the resulting clusters. Given the complexity of these computational subprocesses,
closed-form expressions for the evaluation ofKj are not easily provided. Nevertheless, an approx-
imation to the distribution of the test statistics Kj(Y ), j = 1, ..., c is routinely used in RFT-based
fMRI inference, as will be discussed below.

In the multiple testing scenario and at the voxel level, the statistics of interest are the
maximum and minimum of the voxel height statistics

Tmax := max
v∈Nm

Tv and Tmin := min
v∈Nm

Tv, (6)
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respectively. Similarly, in the multiple testing scenario and at the cluster level, the statistics of
interest are the maximum and minimum of the cluster extent statistics

Kmax := max
j∈Nc

Kj and Kmin := min
j∈Nc

Kj , (7)

respectively. Consideration of the maximum statistics is warranted by their inherent property
of enabling FWER control and the evaluation of minimal power in multiple testing scenarios.
Consideration of the minimum statistics, in contrast, is warranted by their property of enabling
the evaluation of maximum power in multiple testing scenarios. In the following, we detail
the distributions of the statistics of eqs. (4)-(7) under the probabilistic model of eq. (1) that
forms the core of RFT-based fMRI inference and the power evaluation framework proposed
here. The distributions of the statistics will be provided in terms of exceedance probability
functions (EPFs). EPFs are the probabilistic complements of cumulative probability functions
and formulate the probability that a given statistic exceeds (rather than falls below, as in the
case of cumulative probability functions) a given value. The use of EPFs is conventional in RFT-
based fMRI inference and is useful in the contexts of false positive control and statistical power,
both of which correspond to probabilities that statistics exceed critical values.

EPFs of RFT-based fMRI inference statistics

The EPFs of the test statistics (4) - (7) are based on (1) the T -�eld's search space resel volumes,
(2) the T -�eld's EC densities, and (3) three topological feature expectations. We discuss each of
these in turn.

(1) The resel volumes
Rd(S) for d = 0, 1, 2, 3 (8)

of a T−�eld's search space S are the search space's roughness-adjusted intrinsic volumes. In the
SPM implementation of RFT-based fMRI inference, the resel volumes of a statistical parametric
map are approximated by combining the values of the map's intrinsic volumes with a standardized
residuals-based roughness estimate using an algorithm originally proposed by Worsley et al.
(1996).

(2) The EC densities of T -�elds were originally derived as generalizations of the T -distribution
by Worsley (1994). Based on work by Taylor et al. (2006), Hayasaka (2007) and Hayasaka et al.
(2007) extended the EC densities to their non-central counterparts. The non-central T -�eld EC
densities relevant for the current work are given by Hayasaka et al. (2007, p.729) as

ρ0(t; δ, ν) :=

∫ ∞
t

f(τ ; δ, ν) dτ,

ρ1(t; δ, ν) :=

(
4 ln 2

2π

) 1
2 √

ν

(
1 +

t2

ν

)
E
(
U
− 1

2

)
f(t; δ, ν),

ρ2(t; δ, ν) :=

(
4 ln 2

2π

)√
ν

(
1 +

t2

ν

)(ν − 1)
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ν

) 1
2
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(
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−1
)
−
(

1 +
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ν

)− 1
2
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(
U
− 1

2

)
δ

 f(t; δ, ν),

ρ3(t; δ, ν) :=

(
4 ln 2

2π

) 3
2 √

ν

(
1 +

t2
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)

×
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(
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)−1
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(
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δ
2 − E

(
U
− 1

2

)
× f(t; δ, ν).

(9)

In eq. (9), f(t; δ, ν) denotes the probability density function of a non-central T random variable
with non-centrality parameter δ ∈ R and ν > 1 degrees of freedom, which is given by (e.g.,
Lehmann, 1986, p. 254, eq. (80))
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f(t; δ, ν) :=
1

2
ν−1

2 Γ
(
ν
2

)
(νπ)

1
2

∫ ∞
0

τ
ν−1

2 exp
(
−τ

2

)
exp

(
−1

2

(
t
(τ
ν

) 1
2 − δ

)2
)
dτ. (10)

E (Up) denotes the expected value of the pth power of a non-central chi-squared random variable
U with non-centrality parameter φ = δ2 and µ = ν + 1 degrees of freedom , which is given by
(e.g., Johnson et al., 1995, p.449, eq. (29.32c))

E (Up) := 2p exp

(
−φ

2

) ∞∑
j=0

1

j!

(
φ

2

)j Γ
(
p+ j + µ

2

)
Γ
(
j + µ

2

) . (11)

Note that for δ = 0, the non-central T -�eld EC densities (9) are identical to the (central) T -
�eld EC densities as originally reported by Worsley et al. (1996) and Worsley et al. (1996).
For the current work, the non-central T -�eld EC densities (9) are evaluated by the function
r_fun.m. This function computes f(t; δ, ν) using MATLAB's nctpdf.m function, computes the
integral of the zero-order non-central T -�eld EC density using Matlab's nctcdf.m function, and
approximates the series of eq. (11) by a numerically converging �nite sum.

(3) Finally, the EPFs of the test statistics (4) - (7) are based on the following three topological
feature expectations of T -�elds: the expected volume of an excursion set, the expected number
of clusters within an excursion set, and the expected volume of clusters within an excursion set.
For the non-central T -�eld EC densities of eq. (9) with non-centrality parameter

√
nd and n− 1

degrees of freedom, and for a CDT u, these expected values are given by

E(V ) = R3(S)ρ0(u;
√
nd, n− 1), (12)

E(C) = R3(S)ρ3(u;
√
nd, n− 1), and (13)

E(K) = E(V )/E(C), (14)

respectively.

With these preliminaries, the following EPFs for the statistics of eqs. (4) - (7) ensue:

◦ The EPF of the voxel height statistics Tv follows from the standard theory of T -statistics.
Moreover, because the zero-order non-central T -�eld EC density is identical to the cumulative
density function of a non-central T -distribution, the EPF of the Tv for a non-central T -�eld
with non-centrality parameter

√
nd and n− 1 degrees of freedom takes the form

P (Tv ≥ t) = ρ0

(
t;
√
nd, n− 1

)
. (15)

Note that for d = 0, the EPF of Tv equals the EPF of Student's T -distribution with n − 1
degrees of freedom.

◦ The EPF of the cluster extent test statistics Kj derives from an approximation for Gaussian
random �elds originally proposed by Friston et al. (1994). For a non-central T -�eld with non-
centrality parameter

√
nd and n− 1 degrees of freedom, and for a CDT u, this approximation

generalizes to

P (Kj ≥ k) = exp
(
−κk

2
3

)
, where κ :=

(
Γ
(

3
2 + 1

)
E(K)

) 2
3

. (16)

◦ An approximation to the EPF of the maximum voxel height statistic Tmax was originally
proposed by Worsley et al. (1996) and was generalized to non-central T -�elds by Hayasaka
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(2007). For a non-central T -�eld with non-centrality parameter
√
nd and n − 1 degrees of

freedom, the approximation is given by

P (Tmax ≥ t) = 1− exp

(
−

3∑
d=0

Rd(S)ρd(t;
√
nd, n− 1)

)
. (17)

Similarly, as shown in Supplement S.3, an approximation to the EPF of the minimum voxel
height statistic Tmin can be given as

P (Tmin ≥ t) = exp

(
−

3∑
d=0

Rd(S)ρd
(
−t;−

√
nd, n− 1

))
. (18)

◦ Finally, an approximation to the maximum cluster-level statisticKmax was proposed by Friston
et al. (1994). Based on Hayasaka et al. (2007), this approximation can be generalized to non-
central T -�elds with non-centrality parameter

√
nd, n − 1 degrees of freedom, and a CDT u

as

P (Kmax ≥ k) = 1− exp

(
−

3∑
d=0

Rd(S)ρd
(
u;
√
nd, n− 1

)
P (Kj ≥ k)

)
. (19)

Similarly, as shown in Supplement S.3, an approximation to the EPF of the minimum cluster
extent statistic Kmin can be given as

P (Kmin ≥ k) = exp

(
−

3∑
d=0

Rd(S)ρd
(
u;
√
nd, n− 1

)
(1− P (Kj ≥ k))

)
. (20)

Test-relevant aspects of the EPFs in eqs. (15) - (20) are visualized in Supplement S.4. For all
calculations, eqs. (15) - (20) are evaluated with the function q_fun.m.

Test hypotheses

The use of central T -�eld EC densities in the EPFs of fMRI inference test statistics re�ects
the intent to test the complete null hypothesis of zero activation throughout the entire search
space S. Similarly, the use of non-central T -�eld densities in power calculations as proposed by
Hayasaka et al. (2007) and Joyce and Hayasaka (2012) corresponds to the assumption of non-zero
activation throughout the entire search space S. For our current work, we complement these
boundary cases with the assumption of a parameterized partial alternative hypothesis scenario
for power calculations. This scenario is based on the convex bipartition

Rd(S) = (1− λ)R0
d(S) + λR1

d(S) for d = 0, 1, 2, 3 and λ ∈ [0, 1] (21)

of the search space's resel volumes Rd(S), d = 0, 1, 2, 3 into resel volumes R0
d(S), d = 0, 1, 2, 3

for which the null hypothesis of zero activation holds and resel volumes R1
d(S), d = 0, 1, 2, 3 for

which the alternative hypothesis of non-zero activation and with e�ect size parameter δ 6= 0 holds.
Note that for λ = 0, the partial alternative hypothesis scenario (21) corresponds to the complete
null hypothesis of standard RFT-based fMRI inference, whereas for λ = 1, it corresponds to
the complete alternative hypothesis scenario of Hayasaka et al. (2007) and Joyce and Hayasaka
(2012). Intuitively, the value of λ thus corresponds to the proportion of the brain that is assumed
to be activated for a given COPE. Formally, this proportion can be considered equivalent to
the alternative hypothesis ratio in discrete multiple testing developed in Supplement S.2, eq.
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(S2.21). Speci�cally, for a partial alternative hypothesis parameter λ and a set of resel volumes
Rd, d = 0, 1, 2, 3, the expected Euler characteristic

E :=

3∑
d=0

Rdρd(t; δ, ν) for δ ∈ R, ν > 1 (22)

that combines resel volumes and EC densities in the EPFs of the RFT-based fMRI test statistics
(4) - (7) takes the form

Eλ := (1− λ)
3∑
d=0

Rd(S)ρd(t; 0, ν) + λ
3∑
d=0

Rd(S)ρd(t; δ, ν), for δ ∈ R, δ 6= 0, ν > 1. (23)

For eqs. (12) and (14), only the respective zero- and third-order terms are considered.

Tests and power functions

With the test statistics and hypotheses in place, we next formalize the single test and multiple
testing scenario for voxel- and cluster-level inference and document the power functions that
result from the EPFs (15) - (20).

(1) Single test (uncorrected) voxel- and cluster-level inference

The aim of voxel-level inference in the single test scenario is to evaluate the null hypothesis of
zero activation at the vth voxel location using the voxel height statistic Tv for the test

φ(Y ) : Rk → {0, 1}, y 7→ φ(Y ) := 1{Tv≥c}, (24)

where 1{·} denotes the indicator function and c denotes the test's critical value. The Type I error
rate of this test is controlled by choosing a critical value tα′ such that

PΘ0(Tv ≥ tα′) ≤ α′ (25)

and the test obtains a signi�cance level α′. With the EPF of Tv, it then follows that the power
function for voxel-level inference in the single test scenario is given by

β : N≥2 × R→ [0, 1], (n, d) 7→ β(n, d) := ρ0

(
tα′ ;
√
nd, n− 1

)
. (26)

This power function corresponds to the standard power function for one-sample T -tests and is
visualized in Figure 1A and Figure 1B. Note that the dependency of eq. (26) on the critical value
tα′ is commonly expressed indirectly in terms of the dependency of tα′ on α

′ (cf. Figure 1B).
The aim of cluster-level inference in the single test scenario is to evaluate the null hypothesis

of zero activation over the extent of the jth cluster using the cluster extent statistic Kj for the
test

φ(Y ) : Rk → {0, 1}, y 7→ φ(Y ) := 1{Kj≥k}, (27)

where k denotes the test's critical value. The Type I error rate of this test is controlled by
choosing a critical value kα′ such that

PΘ0(Kj ≥ kα′) ≤ α′ (28)

and the test obtains a signi�cance level α′. With the EPF of Kj , it then follows that the power
function for the cluster-level inference in the single test scenario is given by

β : N≥2 × R→ [0, 1], (n, d) 7→ β(n, d) := exp

(
− (Γ (3/2 + 1) /E(K))

2
3 k

2
3
α′

)
, (29)
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where

E(K) =
R3(S)ρ0(u;

√
nd, n− 1)

R3(S)ρ3(u;
√
nd, n− 1)

(30)

denotes the expected volume of a cluster in an excursion set at level u. This power function is
visualized in Figure 1B.

(2) Multiple testing (corrected) voxel- and cluster-level inference

The aim of voxel-level inference in the multiple testing scenario is to evaluate the null hy-
pothesis of zero activation at the vth voxel location while accounting for the multiplicity of tests
over voxels using the multiple test

Φ(Y ) : Rk → {0, 1}m, y 7→ Φ(Y ) :=
(
1{Tv≥cv}

)
v=1,...,m

. (31)

The FWER of this test is controlled based on the EPF of the maximum voxel height statistic
Tmax (17) by choosing a common critical value tα′FWE

such that

PΘ0

(
Tmax ≥ tα′FWE

)
≤ α′FWE (32)

for a desired signi�cance level α′FWE. From the EPF of the maximum voxel height statistic (17),
it then follows, that the minimal power function of voxel-level inference in the multiple testing
scenario under the assumption of a partial alternative hypothesis with parameter λ is given by

βλmin : N≥2 × R→ [0, 1], (n, d) 7→

βλmin(n, d) :=1− exp

(
−λ

3∑
d=0

Rd(S)ρd

(
tα′

FWE
;
√
nd, n− 1

))
.

(33)

Similarly, from the EPF (18) of the minimum voxel height statistic Tmin, it follows that the maxi-
mal power function for voxel-level inference in the multiple testing scenario under the assumption
of a partial alternative hypothesis parameter λ is given by

βλmax : N≥2 × R→ [0, 1], (n, d) 7→

βλmax(n, d) := exp

(
−λ

3∑
d=0

Rd(S)ρd

(
−tα′

FWE
;−
√
nd, n− 1

))
.

(34)

The ensuing minimal and maximal power functions for corrected voxel-level inference for λ =
0.1, 0.2, 0.3 are visualized in Figure 2A.

Finally, the aim of cluster-level inference in the multiple testing scenario is to evaluate the
null hypothesis of zero activation over the extent of the jth cluster location while accounting for
the multiplicity of cluster tests using the multiple test

Φ(Y ) : Rk → {0, 1}c, y 7→ Φ(Y ) :=
(

1{Kj≥kj}

)
j=1,...,c

. (35)

The FWER of this test is controlled based on the EPF of the maximum cluster extent statistic
Kmax (cf. (19)) by choosing a common critical value kα′FWE

such that

PΘ0

(
Kmax ≥ kα′FWE

)
≤ α′FWE (36)
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for a desired signi�cance level α′FWE. From the EPF (19) ofKmax, it then follows that the minimal
power function of cluster-level inference in the multiple testing scenario under the assumption of
a partial alternative hypothesis parameter λ is given by

βλmin : N≥2 × R→ [0, 1], (n, d) 7→

βλmin(n, d) := 1− exp

(
−λ

3∑
d=0

Rd(S)ρd
(
u;
√
nd, n− 1

)
PΘ1

(
Kj ≥ kα′

FWE

))
,

(37)

where PΘ1

(
Kj ≥ kα′FWE

)
is evaluated according to (16) for resel volumes λRd, d = 0, 1, 2, 3.

Similarly, from the EPF (20) of the minimum cluster extent statistic Kmin, it follows that the
maximal power function for cluster-level inference in the multiple testing scenario under the
assumption of a partial alternative hypothesis parameter λ is given by

βλmax : N≥2 × R→ [0, 1], (n, d) 7→

βλmax(n, d) := exp

(
−λ

3∑
d=0

Rd(S)ρd
(
u;
√
nd, n− 1

) (
1− PΘ1

(
Kj ≥ kα′

FWE

)))
,

(38)

where PΘ1

(
Kj ≥ kα′FWE

)
is evaluated as for βλmin above. The ensuing power functions for

λ = 0.1, 0.2, 0.3 are visualized in Figure 2B.
Note the di�erential manner by which the null hypothesis and alternative hypothesis resel

volumes determine the minimal and maximal power functions in the multiple testing scenario: the
null hypothesis resel volumes a�ect the determination of the critical values tα′FWE

and kα′FWE
by

means of the e�ective resel volumes (1−λ)Rd(S) for some total resel volumes Rd(S), d = 0, 1, 2, 3.
In e�ect, the partial alternative hypothesis parameter λ here reduces the multiplicity of the
multiple testing problem, as a control of the FWER is required (and possible) only over the resel
volume subset (or clusters on this subset) for which the null hypothesis holds true. The alternative
hypothesis resel volumes, in contrast, a�ect the evaluation of minimal and maximal power by
means of the e�ective resel volumes λRd(S) for the same total resel volumes Rd(S), d = 0, 1, 2, 3.
If λ = 0, minimal and maximal power are identically zero, as there are no true activations.
Equivalently, if λ = 1, there is no multiple testing problem and hence no FWER, as there are no
non-activations. The power functions (26) - (38) are evaluated with the function p_fun.m.

PPV functions

As discussed in Supplement S.2, PPV functions for the �ve test scenarios of interest herein can be
speci�ed by means of the respective test's (partial alternative hypothesis parameter-dependent)
power function for sample size and e�ect size β(n, d), the test's desired Type I error rate α′, and
the prior hypothesis parameter π as

ψ : N≥2 × R→ [0, 1], (n, d) 7→ ψ(n, d) :=
π

1−πβ(n, d)
π

1−πβ(n, d) + α′
, (39)

where the dependencies on π and α′ are left implicit. The PPV functions depicted in Figure 1
- Figure 4 then follow directly by substituting the respective test power functions of eqs. (26),
(33), (34), (29), (37), (38) in eq. (39)
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Supplementary Material

S.1. Bibliometrics

Over the past seven years, at least four studies have used bibliometric methods and one study
has used survey methods to assess the use of data analysis software packages and statistical test-
ing procedures in the functional neuroimaging literature (Carp, 2012; Woo et al., 2014; Poldrack
et al., 2017; Borghi and Van Gulick, 2018; Yeung, 2018). The most recent and most comprehen-
sive account is provided by Yeung (2018). In Table S.1, we summarize the reported use of the
SPM and FSL software packages for data analysis, the use of RFT-based methods for multiple
testing control, and the relative prevalences of corrected voxel- and cluster-level inference. Note
that because RFT-based inference is the default option in SPM, it is likely that the choice of
the SPM software often implies the use of RFT-based inference, even if this is not explicitly
stated in the primary research study nor the meta-research studies cited here. Also note that, as
reported in Poldrack et al. (2017, p.123), up to a third of published fMRI studies continue to fail
identifying the method used for multiple testing control, a fact which has prompted initiatives
such as the COBIDAS report to improve reporting standards in the fMRI literature (Nichols
et al., 2017).

n Years SPM FSL RFT Voxel Cluster

Carp (2012) 230 2007 - 2014 64.3% 13.9% n.s. n.s. n.s.

Woo et al. (2014) 484 2010 - 2011 62.0% 14.2% n.s. 19.0%** 75.0%**

Poldrack et al. (2017) 66 2016 n.s. n.s. 83.0%* n.s. n.s.

Borghi et al. (2018) 144 2017 71.7% 70.8% n.s. n.s. n.s.

Yeung (2018) 388 2017 52.1% 20.4% 69.2% 23.7 % 69.6%

Table S.1. Bibliometric and survey data on the use of software packages and statistical inference procedures in
the fMRI literature. All cited meta-research studies focus on human fMRI and assessed data analysis methods
in n = 66 to n = 484 primary research studies published between 2007 and 2017. The study by Borghi and
Van Gulick (2018) is based on survey data, all other studies used bibliometric methods. The study by Poldrack
et al. (2017) assessed the most recently published articles as of May 2016, all other bibliometric studies specify the
exact time range of the evaluated research reports. The prevalence of SPM and FSL use ranges between 52.1%
and 71.7% and 13.9% and 70.8%, respectively. The use of RFT-based fMRI inference is explicitly mentioned in
two of the meta-research studies and accounts for approximately 75% of the reported multiple testing control
methods. Corrected cluster-level inference dominates corrected voxel-level inference by approximately 70% to
20% (n: number of studies or survey participants included, Years: time range of the assessed literature or active
use, SPM: Statistical parametric mapping software, FSL: FMRIB software library, RFT: random �eld theory use
for multiple testing control, Voxel: corrected voxel-level inference, Cluster: corrected cluster-level inference, n.s.
: not, or insu�ciently, speci�ed, *: estimated based on the verbose description on p.122 of Poldrack et al. (2017),
**: based on n = 814 primary research studies).
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S.2. Test theory

In this Section we review the formal foundations of test theory. We �rst develop the single
hypothesis test scenario and its associated error rates and power function. We then consider
the multiple testing scenario with a particular emphasis on the notions of partial alternative
hypothesis scenarios as well as minimal and maximal power functions. In a third step, we
discuss the probabilistic foundations of the positive predictive value. We close our review by
discussing a single-observation z-test in the context of the single test and the multiple testing
scenario.

S.2.1 The single test scenario

Probabilistic model. To introduce the notion of a single test, we consider a parametric
probabilistic model Pθ(Y ) that describes the probability distribution of a random entity (i.e., a
random variable or a random vector) Y and that is governed by a parameter θ ∈ Θ. The random
entity Y models data and is assumed to take on values y ∈ Rn, n ≥ 1. Note that we do not
consider the parameter θ to be a random entity and thus develop the following theory against
the background of the classical frequentist scenario.

Test hypotheses. In test scenarios, the parameter space Θ is partitioned into two disjoint
subsets, denoted by Θ0 and Θ1, such that Θ = Θ0 ∪ Θ1 and Θ0 ∩ Θ1 = ∅. A test hypothesis is
a statement about the parameter governing Pθ(Y ) in relation to these parameter space subsets.
Speci�cally, the statement

θ ∈ Θ0 ⇔ H = 0 (S2.1)

is referred to as the null hypothesis and the statement

θ ∈ Θ1 ⇔ H = 1 (S2.2)

is referred to as the alternative hypothesis. Note that we are concerned with the Neyman-Pearson
hypothesis testing framework and thus assume that null and alternative hypotheses always exist
in an explicitly de�ned manner. A number of things are noteworthy. First, a statistical hypothesis
is a statement about the parameter of a probabilistic model. In the following, we will use the
subscript notations PΘ0 and PΘ1 to indicate that the parameter θ of the probabilistic model Pθ
is an element of Θ0 or Θ1, respectively. Second, the term null hypothesis is not necessarily the
statement that some parameter assumes the value zero, even if this is often the case in practice.
Rather, the null hypothesis in a statistical testing problem is the statement about the parameter
one is willing to nullify, i.e., reject. Finally, the expressions H = 0 and H = 1 are not conceived
as realizations of a random variable and hence hypothesis-conditional probability statements are
not meaningful. The statements H = 0 and H = 1 are merely equivalent expressions for θ ∈ Θ0

and θ ∈ Θ1, respectively: H = 0 refers to the true, but unknown, state of the world that the
null hypothesis is true and the alternative hypothesis is false (θ ∈ Θ0), and H = 1 refers to
the true, but unknown, state of the world that the alternative hypothesis is true and the null
hypothesis is false (θ ∈ Θ1). In general, hypotheses can be classi�ed as simple or composite.
A simple hypothesis refers to a subset of parameter space which contains a single element, for
example Θ0 := {θ0}. A composite hypothesis refers to a subset of parameter space which contains
more than one element, for example Θ0 := R≤0. The commonly encountered null hypothesis
Θ0 = {0}, also referred to as nil hypothesis, is an example for a simple hypothesis.

Tests. Given the test hypotheses scenario introduced above, a test is de�ned as a mapping from
the data outcome space to the set {0, 1}, formally

φ(Y = ·) : Rn → {0, 1}, y 7→ φ(Y = y). (S2.3)
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Here, the test value φ(Y = y) = 0 represents the act of not rejecting null hypothesis, while
the test value φ(Y = y) = 1 represents the act of rejecting the null hypothesis. Rejecting
the null hypothesis is equivalent to accepting the alternative hypothesis, and accepting the null
hypothesis is equivalent to rejecting the alternative hypothesis. In the following and in the main
text, we suppress the notational dependence of φ(Y = ·) on y and write φ(Y ) instead. Because
Y is a random entity, the expression φ(Y ) is also a random entity. All tests φ(Y ) considered in
the current study involve the composition of a test statistic

γ(Y ) : Rn → R, (S2.4)

where R models the test statistic's outcome space, and a subsequent decision rule

δ(γ(Y )) : R→ {0, 1}, (S2.5)

such that the test can be written as

φ(Y ) = δ(γ(Y )) : Rn → {0, 1}. (S2.6)

Note that, as for the test, we suppress the dependencies of γ(Y ) and δ(γ(Y )) on y ∈ Rn, such
that both γ(Y ) and δ(γ(Y )) should be read as random entities. The subset of the test statistic's
outcome space for which the test assumes the value 1 is referred to as the rejection region of the
test. Formally, the rejection region is de�ned as

R := {γ(Y ) ∈ R|φ(Y ) = 1} ⊂ R. (S2.7)

The random events φ(Y ) = 1 and γ(Y ) ∈ R are thus equivalent and associated with the same
probability under Pθ(Y ). In a concrete test scenario, it is hence usually the probability distribu-
tion of the test statistic that is of principal concern for assessing the test's outcome behaviour.
Finally, all test decision rules considered in the context of the current study are based on the
test statistic exceeding a critical value u ∈ R. By means of the indicator function, the tests
considered here can thus be written

φ(Y = ·) : Rn → {0, 1}, y 7→ φ(Y = y) := 1{γ(Y=y)≥u} :=

{
1, γ(Y = y) ≥ u
0, γ(Y = y) < u.

(S2.8)

Note that (S2.8) describes the situation of one-sided tests. The one-sided one-sample T -test is a
familiar example of the general test structure described by expression (S2.8): using the sample
mean and sample standard deviation, a realization of the random entity Y is �rst transformed
into the value of the t-statistic, whose size is then compared to a critical value in order to decide
for rejecting the null hypothesis or not.

Tests error probabilities. When conducting a hypothesis test as just described, two kinds
of errors can occur. First, the null hypothesis can be rejected (φ(Y ) = 1), when it is in fact true
(θ ∈ Θ0). This error is referred to as the Type I error. Second, the null hypothesis may not be
rejected (φ(Y ) = 0), when it is in fact false (θ ∈ Θ1). The latter error is known as the Type
II error. The probabilities of Type I and Type II errors under a given probabilistic model are
central to the quality of a test: the probability of a Type I error is called the size of the test and
is commonly denoted by α ∈ [0, 1]. It is de�ned as

α := PΘ0(φ(Y ) = 1), (S2.9)
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and also routinely referred to as the Type I error rate of the test. Its complementary probability,

PΘ0(φ(Y ) = 0) = 1− α, (S2.10)

is known as the speci�city of a test. The probability of a Type II error

PΘ1(φ(Y ) = 0) (S2.11)

lacks a common denomination. Its complementary probability

β := PΘ1(φ(Y ) = 1) (S2.12)

is referred to as the power of a test. In words, the power of a test is the probability of accepting the
alternative hypothesis (rejecting the null hypothesis), if θ ∈ Θ1, i.e., if the alternative hypothesis
is true. Note that basic introductions to test error probabilities often denote the probability of
a Type II error by β ∈ [0, 1] and thus de�ne power by 1−β. For our current purposes, we prefer
the de�nition of eq. (S2.12), because it keeps the notation concise and is more coherent with
common notations of test quality functions.

Significance level. It is important to distinguish between the size and the signi�cance level
of a test: a test is said to be of signi�cance level α′ ∈ [0, 1], if its size α is smaller than or equal
to α′, i.e., if

α ≤ α′. (S2.13)

If for a test of signi�cance level α′ it holds that α < α′, the test is referred to as a conservative
test. If for a test of signi�cance level α′ it holds that α = α′, the test is referred to as an exact
test. Tests with an associated signi�cance level α′ for which α > α′ are sometimes referred to as
liberal tests. Note, however, that such tests are, strictly speaking, not of signi�cance level α′.

The test quality function. The size and the power of a test are summarized in the test's
quality function. For a test φ(Y ), the test quality function is de�ned as

q : Θ→ [0, 1], θ 7→ q(θ) := EPθ(Y )(φ(Y )). (S2.14)

In words, the test quality function is a function of the probabilistic model parameter θ and
assigns to each value of this parameter a value in the interval [0, 1]. This value is given by the
expectation of the test φ under the probabilistic model Pθ(Y ). The de�nition of the test quality
function is motivated by the value it assumes for θ ∈ Θ0 and θ ∈ Θ1: because the random
variable φ(Y ) only takes on values in {0, 1}, the expected value EPθ(Y )(φ(Y )) is identical to the
probability of the event φ(Y ) = 1 under Pθ(Y ). Thus, for θ ∈ Θ0, the test quality function
returns the size of the test (eq. (S2.9)) and for θ ∈ Θ1, the test quality function returns the
power of the test (eq. (S2.12)).

The test power function. For θ ∈ Θ1, the test quality function is also is referred to as the
test's power function and is denoted by

β : Θ1 → [0, 1], θ 7→ β(θ) := PΘ1(φ(Y ) = 1). (S2.15)

Test construction. In both applications and the theoretical development of statistical tests,
the probability for a Type I error, i.e., the test size, is usually considered to be more important
than the Type II error rate, i.e., the complement of the test's power. In e�ect, when designing
a test, the test's size is usually �xed �rst, for example by deciding for a signi�cance level such
as α′ = 0.05 and its associated critical value uα′ of the test statistic (cf. eq. (S2.8)). In a
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second step, di�erent tests or di�erent probabilistic models are then compared in their ability to
minimize the probability of the test's Type II error, i.e., maximize the test's power. For example,
the celebrated Neyman-Pearson lemma states that for tests of simple hypotheses, the likelihood
ratio test achieves the highest power for a given signi�cance level over all conceivable statistical
tests (Neyman and Pearson, 1933). Inspired by current discussions about the power of tests in
functional neuroimaging, in the current study we primarily target the sample size as a parameter
of the probabilistic model to optimize di�erent tests with respect to their Type II error rates
given pre�xed Type I error rates.

S.2.2 The multiple testing scenario

Probabilistic model. The notion of a multiple hypothesis test can be developed in analogy
to the single test scenario. Like the single test scenario, the multiple testing scenario unfolds
against the background of a parametric probabilistic model Pθ(Y ) that describes the probability
distribution of a random entity Y which models observed data taking on values in Rn. The
parameter θ of the model is assumed to take values in a parameter space Θ.

Multiple test hypotheses. In multiple testing scenarios comprising m ∈ N tests, the pa-

rameter space is partitioned m times into disjoint subsets Θ
(i)
0 and Θ

(i)
1 , such that Θ = Θ

(i)
0 ∪Θ

(i)
1

and Θ
(i)
0 ∩ Θ

(i)
1 = ∅ for i ∈ I := {1, ...,m} and |I| = m. In analogy to the single test case, the

statements
θ ∈ Θ

(i)
0 ⇔ H(i) = 0 and θ ∈ Θ

(i)
1 ⇔ H(i) = 1 (S2.16)

about the true, but unknown, value of the parameter θ are referred to as the ith null and
alternative hypothesis, respectively. Collectively, the m null hypotheses and their associated
alternative hypotheses are referred to as a hypotheses family and the set I is referred to as the
hypotheses index set. In the following, we will be concerned with the following situations

• all null hypotheses of the hypotheses family are true and all alternative hypotheses are false,

• some null hypotheses of the hypotheses family are true and the remaining alternative hypothe-
ses are true,

• all null hypotheses of the hypotheses family are false and all alternative hypotheses are true.

For convenience, we will refer to these scenarios as the complete null hypothesis, the partial alter-
native hypothesis, and the complete alternative hypothesis, respectively. The following notation
is helpful to formally express the complete null hypothesis and complete alternative hypothesis
scenarios, respectively:

θ ∈ Θ0 := ∩i∈IΘ(i)
0 ⇔ H(i) = 0 for all i ∈ I (S2.17)

and
θ ∈ Θ1 := ∩i∈IΘ(i)

1 ⇔ H(i) = 1 for all i ∈ I. (S2.18)

Note that despite the identical notation, the di�erence between the single test scenario null and
alternative hypotheses (S2.1) and (S2.2), and the multiple testing scenario complete null and
complete alternative hypotheses (S2.17) and (S2.18) should in general be clear from the context.
As above, we will use the subscript notations PΘ0 and PΘ1 to indicate that the parameter θ of
the probabilistic model Pθ is an element of the complete null or alternative hypotheses Θ0 or
Θ1, respectively. In light of expressions (S2.17) and (S2.18), we denote the partial alternative
hypothesis by

θ ∈ ∩i∈I1Θ
(i)
1 for I1 ⊂ I with m1 := |I1|, (S2.19)
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and refer to I1 as the alternative hypotheses index set. Given the binary nature of the ith null
and alternative hypothesis, it follows immediately that in the case of (S2.19) it holds that

θ ∈ ∩i∈I0Θ
(i)
0 for I0 := I \ I1 with |I0| = m−m1 =: m0. (S2.20)

We refer to I0 as the null hypotheses index set. The ratio of the cardinality of the alternative
hypotheses index set and the cardinality of the hypotheses index set will be denoted by

λ =
m1

m
, (S2.21)

and will be referred to as the alternative hypotheses ratio. Note that λ = 0 corresponds to the
complete null hypothesis, whereas λ = 1 corresponds to the complete alternative hypothesis.
Finally, for λ ∈]0, 1[, we use the subscript notation PλΘ1 to indicate that the parameter θ of
the probabilistic model Pθ is an element of a partial alternative hypothesis with alternative
hypotheses ratio λ.

Multiple test. For the multiple testing scenario, let

φi(Y = ·) : Rn → {0, 1}, y 7→ φi(Y = y) for all i ∈ I (S2.22)

denote a test, such that φi(Y = y) = 0 represents the act of accepting the ith null hypothesis
and rejecting the ith alternative hypothesis, while φi(Y = y) = 1 represents the act of rejecting
the ith null hypotheses and accepting the ith alternative hypothesis. Then a multiple test is a
mapping

Φ(Y = ·) : Rn → {0, 1}m, y 7→ Φ(Y = y) := (φi(Y = y))i∈I . (S2.23)

A multiple test can thus be conceived as an m-dimensional vector of single tests φi(Y = ·), the
probability distribution of which is governed by the parametric probabilistic model Pθ(Y ). As in
the single test scenario, we will suppress the notational dependence of Φ(Y = ·) on y and write
Φ(Y ) instead. Again, because the data Y is modelled as a random entity, the expression Φ(Y )
should be read as a random vector. Similarly, as in the single test scenario we are only concerned
with scenarios for which each constituent test φi(Y ) of Φ(Y ) is of the form

φi(Y = ·) : Rn → {0, 1}, y 7→ φi(Y = y) := 1{γi(Y=y)≥ui}, (S2.24)

where
γi(Y ) : Rn → R (S2.25)

denotes the ith test statistic with ith rejection region

Ri := {γi(Y ) ∈ R|φi(Y ) = 1} ⊂ R, (S2.26)

and ui ∈ R denotes the ith critical value. The multiple one-sided one-sample T -tests commonly
performed for group-level fMRI analyses are a familiar example of the general multiple test struc-
ture described by eqs. (S2.23) - (S2.26): using voxel-speci�c sample means and sample standard
deviations, the data Y , usually comprising voxel-wise participant-speci�c beta parameter esti-
mate contrasts derived from �rst-level GLM analyses, is projected onto a set of m T -statistics.
The values of these m T -statistics individually evaluated with respect to appropriately de�ned
critical values, and for each of the m voxels, the null hypothesis of zero activation is either
rejected or not.
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φi(Y ) = 0 φi(Y ) = 1

θ ∈ Θ
(i)
0 M00 M01 m0

θ ∈ Θ
(i)
1 M10 M11 m1

M00 +M10 M01 +M11 m

Table S.2. The multiple testing scenario. The numbers m0 and m1 of true null and alternative hypotheses
θ ∈ Θ

(i)
0 and θ ∈ Θ

(i)
1 , are assumed to be �xed and unknown. The outcome of the ith test φi(Y ), and hence also

the aggregate numbers of tests to assume either the value 0 or 1, Mij , i = 0, 1, j = 0, 1, as well as their sums,
M00 +M10 and M01 +M11 are random entities, all of which are governed by the parametric probabilistic model
Pθ(Y ) and the functional forms of the test statistics γi, i = 1, ...,m.

Multiple test error probabilities. The multiple testing scenario induces a variety of test
error scenarios. While for the single test scenario there exist four possible constellations of true
hypotheses and test outcomes (θ ∈ Θj and φ(Y ) = k for j = 0, 1 and k = 0, 1) there exist 4m such

constellations in the multiple testing scenario (θ ∈ Θ
(i)
j and φi(Y ) = k for i = 1, ...,m, j = 0, 1

and k = 0, 1). In other words, while a single test φ(Y ) may either result in either a Type I
or a Type II error (or a correct result), a multiple test Φ(Y ) may result in the simultaneous
occurrence of Type I errors in some of its constituent single tests and Type II error in others
of its constituents single tests (and correct results in the remaining single tests). This induces
probabilities for the occurrence of a variety of test error scenarios and hence a variety of Type
I and Type II error rates. As Type II error rates are complementary probabilities of correct
rejections of null hypotheses, di�erent Type II error rates correspond to di�erent notions of
power. In the following, we �rst review the most commonly considered Type I and Type II
error rates in multiple testing scenarios. In later sections, we then consider the family-wise error
rate, minimal and maximal power and their control and evaluation by means of maximum and
minimum statistics in further detail.

The test error rates of multiple testing scenarios can be developed quantitatively as follows:
as above, let I0 and I1 denote the null and alternative hypotheses index sets, respectively (cf.
eqs. (S2.20) and (S2.19)). Note again that the binary single test scenario implies that I = I0∪I1

and I0 ∩ I1 = ∅ and that it is assumed that the sets I0 and I1 and their respective cardinalities
m0 and m1 are true, but unknown, entities. Based on the probabilistic binary outcome of each
test constituent φi(Y ), the following quantities are induced at an aggregate level:

• the number M00 of tests for which θ ∈ Θ
(i)
0 and φi(Y ) = 0,

• the number M01 of tests for which θ ∈ Θ
(i)
0 and φi(Y ) = 1,

• the number M10 of tests for which θ ∈ Θ
(i)
1 and φi(Y ) = 0, and

• the number M11 of tests for which θ ∈ Θ
(i)
1 and φi(Y ) = 1.

The situation is summarized in Table S.2. Note that the valuesm,m0 andm1 correspond to true,
but unknown, quantities, the four quantities Mjk, j = 0, 1, k = 0, 1 correspond to unobservable
random variables, and the quantitiesM00+M10 andM01+M11, i.e., the total number of accepted
and rejected null hypotheses, correspond to observable random variables. Commonly considered
Type I error rates in this scenario are

• the family-wise error rate, de�ned as the probability for the eventM01 ≥ 0, i.e., of one or more
Type I errors,
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• the per-family error rate, de�ned as the expectation of the unobservable random variableM01,
i.e., the expected number of Type I errors,

• the per-comparison error rate, de�ned as the per-family error rate divided by the number of
hypotheses m, and

• the false-discovery rate, de�ned as the expectation of the random variableM01/(M01 +M11) if
M01 +M11 6= 0 and 0 if M01 +M11 = 0, i.e., the expected proportion of Type I errors among
the rejected null hypotheses, or 0, if no hypotheses are rejected.

Notably, in contrast to the Type I error rate in the single test scenario (i.e., the size of a test),
the Type I error rates in the multiple testing scenario refer to either probabilities (such as the
family-wise error rate) or expectations of the counting random variables Mij , i = 0, 1, j = 0, 1.
In a concrete multiple testing scenario, these probabilities and expectations have to be derived
based on the nature of the probabilistic model and the de�nition of the multiple test.

As for the generalization of the notion of a Type I error to the multiple testing scenario, the
multiple testing scenario induces a variety of Type II error rates and their respective complemen-
tary probabilities, i.e., power types. Commonly considered power types in the multiple testing
scenario are

• minimal power, de�ned as the probability of the event M11 ≥ 1, i.e., of one or more correct
rejections of the null hypothesis,

• average power, de�ned as the expectation of the random variable M11 divided by m1, i.e., the
expected proportion of false null hypotheses that are rejected, and

• maximal power, de�ned as the probability of the event M11 = m1, i.e., of correctly rejecting
all false null hypotheses.

Multiple test construction. As in the single test scenario, multiple tests are usually con-
structed to �rst and foremost control a chosen Type I error rate at a desired signi�cance level
α′. In a second step, additional test construction measures may then be taken to achieve a
desired level of a chosen power type. The random �eld theory-based fMRI inference framework
has traditionally focussed on the family-wise error rate (FWER) as the target for Type I error
rate control. In the following, we shall thus further elaborate on the de�nition of the FWER
and establish how the distribution of the maximum statistic can be utilized for its control. Fur-
thermore, we formally develop the notions of minimal and maximal power and their relation to
maximum and minimum statistics, respectively.

Maximum statistic-based FWER control. As introduced above, the FWER of a multiple
test is de�ned as the probability of one or more Type I errors. More formally, let Φ(Y ) =
(φi(Y ))i∈I denote a multiple test with with hypotheses index set I and null hypotheses index set
I0 ⊆ I, I0 6= ∅. Then the FWER is de�ned as the probability

αFWE := P∩i∈I0Θ
(i)
0

(∪i∈I0φi(Y ) = 1) . (S2.27)

This expression is to be understood as follows: clearly, the FWER refers to the probability of
events φi(Y ) = 1 under the probabilistic model for the case that at least one null hypothesis

holds true, i.e., I0 6= ∅. More speci�cally, the intersection subscript ∩i∈I0Θ
(i)
0 quali�es that the

parameter of the probabilistic model is such, that all null hypotheses with indices in the set
I0 ⊆ I, I0 6= ∅ hold. Complementary, the union statement ∪i∈I0φi(Y ) = 1 implies that the event
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φi1(Y ) = 1 and/or the event φi2(Y ) = 1, ..., and/or the event φim0
(Y ) = 1 with ij ∈ I0 for

j = 1, 2, ...,m0 occurs, i.e., that at least one, but possible more, events φi(Y ) = 1 with i ∈ I0

occurs. This is equivalent to the probability of the event M01 ≥ 0 as considered above. In
analogy to the signi�cance level in the single test scenario, a multiple test Φ(Y ) is then said to
be of family-wise signi�cance level α′FWE, if its FWER is equal to or smaller than α′FWE, i.e., if

αFWE ≤ α′FWE. (S2.28)

Equivalently, such a test is said to control the FWER at level α′FWE. If for a test Φ(Y ) it holds
that αFWE = α′FWE, we say that Φ(Y ) o�ers exact control of the FWER at level α′FWE. A general
method to establish FWER control for a multiple test of the form (S2.23) - (S2.26) at a level
α′FWE is a�orded by consideration of the distribution of the maximum test statistic

γ0
max(Y ) := max

i∈I0
γi(Y ). (S2.29)

The method rests on identifying a common critical value uFWE
α′ ∈ R for all constituent tests φi(Y )

of the form (S2.24) that satis�es

P∩i∈I0Θ
(i)
0

(γ0
max(Y ) ≥ uFWE

α′ ) ≤ α′FWE. (S2.30)

Intuitively, requirement (S2.30) states that the probability of the maximum of the multiple test's
test statistics to assume a value larger than or equal to the critical value uFWE

α′ over the set of
true null hypotheses is smaller or equal to the the desired FWER control level α′FWE. As shown
below, from requirement (S2.30) it readily follows that

P∩i∈I0Θ
(i)
0

(∪i∈I0φi(Y ) = 1) ≤ α′FWE, (S2.31)

i.e., that the multiple test controls the FWER at level α′FWE. From an applied perspective, the
maximum statistic-based FWER control approach entails that the distribution of the maximum
statistic over the set of true null hypotheses needs to be evaluated based on the form of the
probabilistic model and the resulting distributions of the component test statistics γi(Y ).

Proof of eq. (S2.31)

Let Φ(Y ) denote a multiple test of the form eqs. (S2.23) - (S2.26), and de�ne ui := uFWE
α′ for all i ∈ I0. Further,

let the critical value uFWE
α′ be such that with the de�nition of the maximum statistic γ0

max(Y ) in eq. (S2.29) it
holds that

P∩i∈I0Θ
(i)
0

(
γ0
max(Y ) ≥ uFWE

α′

)
≤ α′FWE. (S2.32)

Then, with the de�nition of the FWER in eq. (S2.27), it follows that

P∩i∈I0Θ
(i)
0

(∪i∈I0 φi(Y ) = 1) = 1− P∩i∈I0Θ
(i)
0

(∩i∈I0 φi(Y ) = 0)

= 1− P∩i∈I0Θ
(i)
0

(
γi1(Y ) < uFWE

α′ , γi2(Y ) < uFWE
α′ , ..., γim0

(Y ) < uFWE
α′

)
= 1− P∩i∈I0Θ

(i)
0

(
γ0
max(Y ) < uFWE

α′

)
= P∩i∈I0Θ

(i)
0

(
γ0
max(Y ) ≥ uFWE

α′

)
≤ α′FWE,

(S2.33)

where on the right-hand side of the second equation ij ∈ I0 for j = 1, 2, ...,m0. In verbose form: the probability
of the event that one or more of the component tests φi(Y ), i ∈ I0 of the multiple test Φ(Y ) evaluate to 1 over
the set of true null hypotheses I0 is equal to the complementary probability of the event that all component tests
evaluate to 0 over the set of true null hypotheses I0. Given the form of the multiple test Φ(Y ), this probability
in turn corresponds to the probability that all relevant component test statistics assume values smaller than the

9

.CC-BY 4.0 International licenseauthor/funder. It is made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/613331doi: bioRxiv preprint 

https://doi.org/10.1101/613331
http://creativecommons.org/licenses/by/4.0/


critical value uFWE
α′ . The latter event is identical to the event that the maximum statistic γ0

max(Y ) over the set of
true null hypotheses is smaller than uFWE

α′ . The complementary probability of this event then implies the validity
of eq. (S2.31).

�

A note on the usage of the terms �uncorrected single test� and �corrected multiple testing� infer-
ence in the main text may be appropriate here: de-facto, FWER control in multiple testing is not
based on some form of correction procedure that turns an �uncorrected p-value� into a �corrected
p-value�, but the two p-values of uncorrected and corrected inference instead refer to di�erent
statistics. Because the notion of �correcting for the multiple testing problem� using �corrected
p-values� is deeply engrained in the fMRI literature, however, we refrain from abandoning this
terminology.

Maximum statistic-based minimal power evaluation. Minimal power can be conceived
of as the mirror analogue of the FWER. As de�ned above, minimal power is the probability for
one or more correct rejections of the null hypothesis. In analogy to the FWER, minimal power
of a multiple test Φ(Y ) = (φi(Y ))i∈I with hypotheses index set I and alternative hypotheses
index set I1 ⊆ I, I1 6= ∅ is formally given as

βmin := P∩i∈I1Θ
(i)
1

(∪i∈I1 φi(Y ) = 1) . (S2.34)

As for the formal expression of the FWER, the intersection statement ∩i∈I1Θ
(i)
1 quali�es that the

parameter of the probabilistic model is such that all alternative hypotheses with indices in the
set I1 ⊆ I, I1 6= ∅ hold true, while the union statement ∪i∈I1 implies that the event φi1(Y ) = 1
and/or the event φi2(Y ) = 1, ..., and/or the event φim1

(Y ) = 1 with ij ∈ I1 for j = 1, 2, ...,m1

occurs, i.e., that at least one, but possible more, events φi(Y ) = 1 with i ∈ I1 occurs. This
is equivalent to the event M11 ≥ 1 as considered above. Minimal power can be evaluated in
a straight-forward fashion for multiple testing procedures that employ a common critical value
and for which the distribution of the maximum statistic is known. Speci�cally, as shown below,
given a test of the form (S2.23) - (S2.26), the de�nition of the maximum statistic

γ1
max(Y ) := max

i∈I1
γi(Y ) (S2.35)

and a critical value u ∈ R, it holds that

βmin = P∩i∈I1Θ
(i)
1

(
γ1
max(Y ) ≥ u

)
. (S2.36)

In the applied context of the current study, eq. (S2.36) implies that minimal power can be
evaluated by considering the appropriate maximum statistic distributions of the random-�eld
theory-based fMRI inference framework.

Proof of eq. (S2.36)

Let Φ be a multiple test of the form eqs.(S2.23) - (S2.26), let γ1
max(Y ) denote the maximum statistic as de�ned in

eq. (S2.35), and let u ∈ R denote an arbitrary critical value. Then eq. (S2.36) follows in analogy to the derivation
of eq. (S2.31) as follows:

P∩i∈I1Θ
(i)
1

(
γ1
max(Y ) ≥ u

)
= 1− P∩i∈I1Θ

(i)
1

(
γ1
max(Y ) < u

)
= 1− P∩i∈I1Θ

(i)
1

(
γi1(Y ) < u, γi2(Y ) < u, ..., γim1

(Y ) < u
)

= 1− P∩i∈I1Θ
(i)
1

(∩i∈I1 φi(Y ) = 0)

= P∩i∈I1Θ
(i)
1

(∪i∈I1 φi(Y ) = 1)

= βmin,

(S2.37)
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where on the right-hand side of the second equation ij ∈ I1 for j = 1, 2, ...,m1.

�

Minimum statistic-based maximal power evaluation. In analogy to the formal de�nition
of minimal power in eq. (S2.34), maximal power can be de�ned as

βmax := P∩i∈I1Θ
(i)
1

(∩i∈I1 φi(Y ) = 1) . (S2.38)

In analogy to the formal FWER and minimal power de�nitions, the intersection subscript

∩i∈I1Θ
(i)
1 quali�es that the parameter of the probabilistic model is such, that all alterantive hy-

potheses with indices in the set I1 ⊆ I, I1 6= ∅ hold, while the intersection statement ∩i∈I1φi(Y ) =
1 implies that the events φi1(Y ) = 1 and the event φi2(Y ) = 1, ..., and the event φim1

(Y ) = 1
with ij ∈ I1 for j = 1, 2, ...,m1 occur, i.e., that all events φi(Y ) = 1 with i ∈ I1 occur. This is
equivalent to the probability of the event M11 = m1 as considered above. Moreover, as shown
below, given a test of the form (S2.23) - (S2.26), the de�nition of the minimum test statistic

γ1
min(Y ) := min

i∈I1
γi(Y ), (S2.39)

and a critical value u ∈ R, it holds that

βmax = P∩i∈I1Θ
(i)
1

(
γ1
min(Y ) ≥ u

)
. (S2.40)

In the context of the current study, eq. (S2.40) implies that the evaluation of maximal power
necessitates the availability of the minimum statistics distributions of the random-�eld theory-
based fMRI inference framework under the appropriate alternative hypotheses scenarios.

Proof of eq. (S2.40)

Let Φ(Y ) denote a multiple test of the form eqs.(S2.23) - (S2.26), let γ1
min(Y ) denote the minimum statistic as

de�ned in eq. (S2.39), and let u ∈ R denote an arbitrary critical value. Then eq. (S2.40) follows in analogy to
the derivation of eq. (S2.36) as follows:

βmax = P∩i∈I1Θ
(i)
1

(∩i∈I1 φi(Y ) = 1)

= P∩i∈I1Θ
(i)
1

(
γi1(Y ) ≥ u, γi2(Y ) ≥ u, ..., γim1

(Y ) ≥ u
)

= P∩i∈I1Θ
(i)
1

(
γ1
min ≥ u

)
,

(S2.41)

where on the right-hand side of the second equation ij ∈ I1 for j = 1, 2, ...,m1.

�

Power functions. Based on the de�nitions of the partial alternative hypothesis ratio in eq.
(S2.21), the de�nitions of minimal and maximal power in eqs. (S2.34) and (S2.38), respectively,
and in analogy to the power function of the single test scenario (S2.15), we de�ne the following
minimal and maximal power functions of a given multiple test Φ(Y ) with hypothesis index set
I, I0 ⊂ I, I0 6= ∅:

βλmin : ∩i∈I1Θ1 → [0, 1], θ 7→ βλmin(θ) := P∩i∈I1Θ
(i)
1

(∪i∈I1 φi(Y ) = 1) (S2.42)

and
βλmax : ∩i∈I1Θ1 → [0, 1], θ 7→ βλmax(θ) := P∩i∈I1Θ

(i)
1

(∩i∈I1 φi(Y ) = 1) . (S2.43)

Note that the assumption I0 ⊂ I, I0 6= ∅ implies that neither I0 nor I1 are empty sets and that
hence λ ∈]0, 1[.

11

.CC-BY 4.0 International licenseauthor/funder. It is made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/613331doi: bioRxiv preprint 

https://doi.org/10.1101/613331
http://creativecommons.org/licenses/by/4.0/


S.2.3 Positive predictive value functions

The concept of a positive predictive value (PPV) descends from a framework originally presented
by Wacholder et al. (2004). Speci�cally, it arises in the context of probabilistic models, in which,
in contrast to the classical frequentist test theory discussed thus far, both the test outcomes and
the hypotheses states are modelled by random variables. In the following, we �rst consider the
notion of a PPV in the context of the single test scenario discussed in Section S.2.1 and develop
the notion of a PPV function. In a second step, we then consider the notion of a PPV in the
multiple testing scenario of Section S.2.2 and de�ne the ensuing minimal and maximal PPV
functions.

The single test scenario. To establish the formal background of the PPV, we consider the
parametric probabilistic model

Pθ(H,φ(Y )), (S2.44)

where the random variable H models the hypothesis state and the random variable φ(Y ) models
the test state. As in Section S.2.1, H = 0 models the case that the null hypothesis is true
and the alternative hypothesis is false, and H = 1 models the case that the null hypothesis is
false and the alternative hypothesis is true (cf. eqs. (S2.1) and (S2.2)). Similarly, φ(Y ) = 0
represents the act of not rejecting the null hypothesis and φ(Y ) = 1 represents the act of
rejecting the null hypothesis (cf. eq. (S2.3)). Note that the distribution of the data is considered
only implicitly in the current probabilistic model, which is justi�ed as we again consider only
deterministic test procedures. For the development of the PPV, the joint distribution of H
and φ(Y ) is constructed by (1) de�ning a parameterized marginal distribution for H and (2)
employing the concepts of a single test's size and power for the de�nition of the necessary
conditional distributions. Speci�cally, the probability for the alternative hypothesis being true
is parameterized by π ∈ [0, 1], inducing the marginal hypothesis prior distribution

Pθ(H = 0) := 1− π, Pθ(H = 1) := π. (S2.45)

The required conditional distributions of φ(Y ) are then constructed by de�ning

Pθ(φ(Y ) = 1|H = 0) := α, (S2.46)

and
Pθ(φ(Y ) = 1|H = 1) := β, (S2.47)

where α and β refer to the size and the power of the test φ(Y ) (cf. eqs. (S2.9)) and (S2.12),
respectively. Based on the thus de�ned joint distribution, the conditional probability of H to
assume the value 1 given that φ(Y ) assumes the value 1 evaluates to

Pθ(H = 1|φ(Y ) = 1) =
πβ

πβ + α(1− π)
. (S2.48)

Proof of eq. (S2.48)

Eq. (S2.48) can be derived by (1) formulating the joint probability distribution Pθ(H,φ(Y )) based on the de�nition
of the marginal distribution and conditional distributions P (H) and P (φ(Y )|H) in eqs. (S2.45), (S2.46) and
(S2.47), (2) evaluation of the marginal distribution Pθ(φ(Y )), and (3) evaluation of the ensuing conditional
probability (S2.48).

(1) For the joint distribution, we have

P (H = 0, φ(Y ) = 0) = P (H = 0)P (φ(Y ) = 0|H = 0) = (1− π)(1− α)

P (H = 0, φ(Y ) = 1) = P (H = 0)P (φ(Y ) = 1|H = 0) = (1− π)α

P (H = 1, φ(Y ) = 0) = P (H = 1)P (φ(Y ) = 0|H = 1) = π(1− β)

P (H = 1, φ(Y ) = 1) = P (H = 1)P (φ(Y ) = 1|H = 1) = πβ

(S2.49)
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Figure S.1. Positive predictive value. (A) Panel A visualizes the PPV as a function of the hypothesis prior
probability π and the test power β for a �xed test size of α = 0.05. At �xed prior probability, an increase in
power results in an increase of the PPV. For large prior probabilities, the e�ect of power on the PPV is negligible,
while for low prior probabilities, the e�ect of power on the PPV is more pronounced. (B) Panel B visualizes the
PPV for a uniform hypothesis prior probability distribution as a function of test power and test size. Optimal
test properties of α = 0 and β = 1 result in an optimal PPV. For a test size of α = 0, optimal test power of β = 1
yields a PPV corresponding to the hypothesis prior probability π = 0.5. (C) Panel C visualizes the PPV for the
commonly desired power of β = 0.8 as a function of the hypothesis prior probability and the test size. Note that
the hypothesis prior probability dominates both test size and power. For implementational details, please see
rftp_�gure_S1.m.

(2) For the marginal distribution P (φ), we thus have

P (φ(Y ) = 0) = P (H = 1, φ(Y ) = 0) + P (H = 0, φ(Y ) = 0) = π(1− β) + (1− π)(1− α)

P (φ(Y ) = 1) = P (H = 1, φ(Y ) = 1) + P (H = 0, φ(Y ) = 1) = πβ + (1− π)α
(S2.50)

(3) Finally, for the conditional distribution of the alternative hypothesis being true (H = 1) given a positive test
outcome φ(Y ) = 1, we have

P (H = 1|φ(Y ) = 1) =
P (H = 1, φ(Y ) = 1)

P (φ(Y ) = 1)
=

πβ

πβ + (1− π)α
(S2.51)

which completes the proof. �

For the probability Pθ(H = 1|φ(Y ) = 1), Ioannidis (2005) coined the term positive predictive
value. Intuitively, the PPV is thus the probability of the alternative hypothesis being true,
given a positive test outcome. We visualize the dependency of the PPV on the hypothesis prior
probability π, the test power β, and the test size α in Figure S.1. Fixing one of the three
parameters of the PPV at a conventional level (α = 0.05, π = 0.5 and β = 0.8) demonstrates
that the PPV of a test increases with the hypothesis prior probability and the test power, and
decreases for increases in test size. Note that Ioannidis (2005) and Button et al. (2013) prefer
the formulation of the PPV in terms of the pre-study odds

ω :=
π

1− π
, (S2.52)

rather than hypothesis prior probability. In terms of the pre-study odds, the PPV can be re-
expressed as

Pθ(H = 1|φ(Y ) = 1) =
ωβ

ωβ + α
. (S2.53)

Proof of eq. (S2.53)
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With the expression for the conditional probability of H = 1 given φ(Y ) = 1 and the de�nition of the pre-study
odds of eq. (S2.52), we have

Pθ(H = 1|φ(Y ) = 1) =
πβ

πβ + α(1− π)

=
πβ

πβ + α(1− π)
·

1
1−π

1
1−π

=
π

1−πβ
π

1−πβ + α 1−π
1−π

=
ωβ

ωβ + α
.

(S2.54)

�

For a pre�xed test size, the notions of a single test's power function (cf. eq. (S2.15)) and the
functional form of the PPV (cf. eq. (S2.48)) induce the positive predictive value function (PPV
function)

ψ : Θ× [0, 1]→ [0, 1], (θ, π) 7→ ψ(θ, π) :=
πβ(θ)

πβ(θ) + α(1− π)
, (S2.55)

where β(θ) denotes the value of the test power function for θ. Note that the values of the PPV
function depend on the pre�xed test size α, the parameters of the probabilistic model by means
of the single test power function β, and the hypothesis prior probability π.

The multiple testing scenario. To generalize the notion of a PPV function to the multiple
testing scenario, we de�ne the minimal and maximal positive predictive value functions

ψλmin : Θ× [0, 1]→ [0, 1], (θ, π) 7→ ψλmin(θ, π) :=
πβλmin(θ)

πβλmin(θ) + α(1− π)
(S2.56)

and

ψλmax : Θ× [0, 1]→ [0, 1], (θ, π) 7→ ψλmax(θ, π) :=
πβλmax(θ)

πβλmax(θ) + α(1− π)
, (S2.57)

respectively, where βmin and βmax denote the minimal and maximal power functions as de�ned
in (S2.42) and (S2.43). Note that in this scenario, the marginal hypothesis parameter π repre-
sents the prior probability of the partial alternative hypothesis scenario with partial alternative
hypothesis parameter λ ∈]0, 1[.

S.2.4 Examples

To illustrate the theoretical concepts of Section S.2.1 to Section S.2.3 and as a conceptual ref-
erence point for the random �eld theory-based fMRI inference scenarios discussed in the main
text, we next discuss two examples. The �rst example concerns a single test scenario, the second
example concerns the extension of the �rst example to the multiple testing scenario. In both
scenarios, we make repeated use of the probability density function of the Gaussian distribution,
which we abbreviate by

N(x;µ,Σ) := (2π)−
n
2 |Σ|−

1
2 exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
(S2.58)

for expectation parameter µ ∈ Rn and positive-de�nite covariance matrix parameter Σ ∈ Rn×n.
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A single-observation z-test

Probabilistic model. As a �rst example, we consider a probabilistic model Pθ(Y ) that governs
the distribution of a data random variable Y taking values in R. For µ ∈ R and σ2 > 0, the
model is assumed to be de�ned in terms of the probability density function

pθ(y) := N(y;µ, σ2). (S2.59)

Intuitively, a single data point Y = y is thus assumed to have been sampled from a univariate
Gaussian distribution of unknown expectation and known variance. For this model, we assume
that the parameter space of interest is of the form Θ := R≥0.

Test hypotheses, statistic, and definition. A single test scenario is then induced by
de�ning the null and alternative hypotheses

µ ∈ Θ0 := {0} and µ ∈ Θ1 := R>0. (S2.60)

Furthermore, a test of the form (S2.8) can be constructed by de�ning the identity test statistic

Z(Y = ·) : R→ R, y 7→ Z(Y = y) := y (S2.61)

and the test
φ(Y = ·) : R→ {0, 1}, y 7→ φ(Y = y) := 1{Z(Y=y)≥u}. (S2.62)

In words, the null hypothesis µ ∈ Θ0 is rejected, if the data realization is equal to or exceeds a
given critical value u ∈ R, otherwise it is not rejected.
Distributions of the test statistic. As discussed in Section S.2.1, to a�ord Type I error
rate control and to evaluate the power of a thus controlled test, the distributions of the test
statistic under the null and alternative hypotheses are central. The former distribution allows for
identifying a critical value such that the size of the test maximally assumes a certain probability.
The latter distribution allows for evaluating the probability of rejecting the null hypothesis under
the scenario of the alternative hypothesis being true. In the current test scenario, the distribution
of the test statistic under the null hypothesis θ ∈ Θ0, and hence also the probabilities for the
equivalent events Z(Y ) ∈ [u,∞[ and φ(Y ) = 1, can be readily inferred: because the test statistic
conforms to the identity mapping, its distribution for µ ∈ Θ0 is given by the probability density
function

pΘ0(z) = N(z; 0, σ2). (S2.63)

Likewise, the test statistic distribution for θ ∈ Θ1 and its associated events Z(Y ) ∈ [u,∞[ and
φ(Y ) = 1 is given by the probability density function

pΘ1(z) = N(z;µ, σ2) with µ ∈ R>0. (S2.64)

Type I error rate control. Given the form (S2.62) of the current test, φ(Y ) can be rendered
an exact test of signi�cance level α′ by choosing a critical value uα′ such that

PΘ0 (φ(Y ) = 1) = PΘ0(Z(Y ) ≥ uα′) = 1−
∫ uα′

−∞
N
(
x; 0, σ2

)
dx = α′. (S2.65)

Note that the required integral corresponds to the cumulative density function of the univariate
Gaussian distribution, for which well-known and widely implemented approximations exist. A
numerical approach for the evaluation of uα′ based on the probability PΘ0(Z(Y ) ≥ uα′) is
discussed in Section S.6.
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Power and positive predictive value function. Given a critical value uα′ and the dis-
tribution of the test statistics under the alternative hypothesis scenario as speci�ed by (S2.64),
the probability of the event φ(Y ) = 1 evaluates to

PΘ1 (φ(Y ) = 1) = PΘ1(Z(Y ) ≥ uα′) = 1−
∫ uα′

−∞
N
(
x;µ, σ2

)
dx for µ ∈ R>0. (S2.66)

The power function of the test thus takes the form

β : R>0 → [0, 1], µ 7→ β(µ) := 1−
∫ uα′

−∞
N
(
x;µ, σ2

)
dx. (S2.67)

In applied settings, the parameterization of power functions in terms of the e�ect size measure
Cohen's d is often preferred. For a univariate Gaussian distribution with expectation parameter
µ ∈ R and variance parameter σ2 > 0, Cohen's d is de�ned as

d :=
µ

σ
. (S2.68)

For the power function (S2.67), re-parameterization in terms of d results in

β : R>0 → [0, 1], d 7→ β(d) := 1−
∫ uα′

−∞
N
(
x;σd, σ2

)
dx. (S2.69)

Finally, based on the form (S2.69) of the single-observation z-test power function and with the
introduction of a prior hypothesis parameter π, the PPV function (cf. eq. (S2.55)) takes the
form

ψ : [0, 1]× R>0 → [0, 1], (π, d) 7→ ψ(π, d) :=
πβ(d)

πβ(d) + α′(1− π)
. (S2.70)

We visualize the single-observation z-test in Figure S.2. Figure S.2A visualizes the exceedance
probability Pθ(Z ≥ z) as a function of the statistic value z on the x-axis and the e�ect size d on
the y-axis. In addition, the panel indicates the critical value uα′ = 1.645 for a signi�cance level
of α′ = 0.05 by a red line. The exceedance probabilities for z = uα′ as a function of the e�ect size
d correspond to power function β, which is visualized in Figure S.2B. Finally, the PPV function
ψ is visualized in Figure S.2C.

Multiple single-observation z-tests

Probabilistic model. We next consider the single-observation z-test in a multiple testing sce-
nario. To this end, we assume a parametric probabilistic model Pθ(Y ) governing the distribution
of a random vector Y = (Y1, ..., Ym)T . Each component of Y is conceived as a univariate Gaus-
sian random variable and the components are assumed to be distributed independently and with
identical known variance σ2 > 0. A probability density function for the distribution of Y taking
on values y ∈ Rm is thus given by

pθ(y) = N(y;µ, σ2Im), (S2.71)

where µ ∈ Rm and Im denotes the m × m identity matrix. In other words, Y is distributed
according to a multivariate Gaussian distribution with expectation parameter µ and spherical
covariance matrix parameter σ2Im. The parameter space of the model is assumed to be given
by Θ := Rm≥0 and concerns the expectation parameter µ.
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Figure S.2. Exceedance probybility, power, and PPV functions for the single-observation z-test in

the single test scenario. (A) The panel depicts the exceedance probability Pθ(Z ≥ z) as a function of the
statistic value z and the e�ect size d. The red line indicates the critical value uα′ = 1.645 for a signi�cance level of
α′ = 0.05. (B) The power function of the single observation z-test. The values of the power function correspond
to the the values of the EPFs for the critical value uα′ as depicted in Panel A. Note that for d = 0, the value of
the power function corresponds to the size of the test. (C) The PPV function of the single-observation z-test.
Note that for a hypothesis prior of π = 0, the PPV of the test does not exceed 0.5, while for a hypothesis prior of
π = 1 the PPV of the test, is equal to one, regardless of the e�ect size. For implementational details, please see
rftp_�gure_S2.m.

Test hypotheses, statistics, and definition. For an index set I := {1, 2, ...,m} and a
value θ ∈ R>0 we consider the family of hypotheses

µ ∈ Θ
(i)
0 := {x ∈ Rm≥0|xi = 0} ⇔ H(i) = 0 for i ∈ I, (S2.72)

and
µ ∈ Θ

(i)
1 := {x ∈ Rm≥0|xi = θ} ⇔ H(i) = 1 for i ∈ I, (S2.73)

where xi denotes the ith component of x ∈ Rm, i = 1, ...,m. The ith null hypothesis thus states
that the ith component of µ is zero and the remaining components of µ take on arbitrary values
in R≥0, while the ith alternative hypothesis states that the ith component of µ is equal to θ > 0
and the remaining components of µ take on arbitrary values in R≥0. A multiple test of the form
(S2.23) - (S2.26) can then be constructed by de�ning the test statistics

Zi(Y = ·) : Rm → R, y 7→ Zi(Y = y) := yi for i ∈ I (S2.74)

and de�ning the test

Φ(Y = ·) : Rm → {0, 1}m, y 7→ Φ(Y = y) :=
(
1{Zi(Y=y)≥ui}

)
i=1,...,m

. (S2.75)

The ith test statistic thus corresponds to the projection of Y onto its i coordinate. Note that
for the current scenario the dimension of the data outcome space and the number of tested
hypotheses are identical, but this does not necessarily have to be case.

Distributions of the maximum statistic. We next assume that we aim for the maximum
statistic-based control of the FWER of the multiple test de�ned in eq. (S2.75). As discussed in
Section S.2.2, this entails the evaluation of distribution the maximum statistic

Z0
max(Y ) := max

i∈I0
Zi(Y ). (S2.76)
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For the current example this distribution can be expressed in terms of the EPF

P∩i∈I0Θ
(i)
0

(
Z0
max(Y ) ≥ z

)
= 1−

(∫ z

−∞
N(x; 0, σ2) dx

)m0

. (S2.77)

Proof of eq. (S2.77)

We have

P∩i∈I0Θ
(i)
0

(
Z0
max(Y ) ≥ z

)
= 1− P∩i∈I0Θ

(i)
0

(
Zmax(Y )0 < z

)
= 1− P∩i∈I0Θ

(i)
0

(
Zi1(Y ) < z,Zi2(Y ) < z, ..., Zim0

(Y ) < z
)

= 1−
m0∏
j=1

P
Θ

(ij)

1

(
Zij (Y ) < z

)
= 1−

(∫ z

−∞
N(x; 0, σ2) dx

)m0

,

(S2.78)

where ij ∈ I0 for j = 1, 2, ...,m0. The factorization of the joint distribution of the relevant test statistics implied
by the third equation follows from the assumption of a spherical covariance matrix for the probabilistic model,
which for the multivariate Gaussian distribution implies the independence of its component random variables.
The fourth equation follows with the well-known form of the marginal distributions of the multivariate Gaussian
distribution.

�

Furthermore, we aim for the evaluation of minimal and maximal power functions and their
associated PPV functions. As discussed in Section S.2.2, this entails the evaluation of the
distributions of

Z1
max(Y ) := max

i∈I1
Zi(Y ) (S2.79)

and
Z1
min(Y ) := min

i∈I1
Zi(Y ) (S2.80)

As shown below, these distributions can be expressed in terms of the EPFs

P∩i∈I1Θ
(i)
1

(
Z1
max(Y ) ≥ z

)
= 1−

(∫ z

−∞
N(x; θ, σ2) dx

)m1

with θ ∈ R>0 (S2.81)

and

P∩i∈I1Θ
(i)
1

(
Z1
min(Y ) ≥ z

)
=

(
1−

∫ z

−∞
N(x; θ, σ2) dx

)m1

with θ ∈ R>0, (S2.82)

respectively.

Proof of eqs. (S2.81) and (S2.82)

The EPF (S2.81) follows as in the proof of (S2.77) by substitution of I1,Θ
(i)
1 and m1 for I0,Θ

(i)
0 and m0,

respectively. Similarly, the EPF (S2.82) follows from

P∩i∈I1Θ
(i)
1

(
Z1
min(Y ) ≥ z

)
= P∩i∈I1Θ

(i)
1

(
Zi1(Y ) ≥ z, Zi2(Y ) ≥ z, ..., Zim1

(Y ) ≥ z
)

=

m1∏
j=1

P
Θ

(ij)

1

(
Zij (Y ) ≥ z

)
=

(
1−

∫ z

−∞
N(x; θ, σ2) dx

)m1

,

(S2.83)

where ij ∈ I1 for j = 1, 2, ...,m1.

�
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Figure S.3. Exceedance probability, power, and PPV functions for the single observation z-test in

the multiple testing scenario. (A) Maximum and minimum statistic EPFs for the multiple single-observation
multiple z-test scenario with m := 100 hypotheses and variance parameter σ2 := 1. Note that when compared to
the single test scenario, the critical value uFWE

α′ for a family-wise signi�cance level of αFWE = 0.05′ as indicated
by the red lines assumes a value approximately twice as large. (B) Minimum and maximal power as functions
of the partial alternative hypothesis parameter λ and the e�ect size parameter d. Note that to achieve similar
levels, maximal power requires much larger e�ect sizes than minimal power. (C) Minimal and maximal PPVs
as functions of the prior partial alternative hypothesis parameter and the e�ect size parameter d for a partial
alternative hypothesis parameter of λ = 0.1. As in the single test scenario, extreme prior alternative hypothesis
parameters render the PPV less dependent on the e�ect size than medium sized prior alternative hypothesis
parameters. For implementational details, please see rftp_�gure_S3.m.

Type I error rate control. As discussed in Section S.2.2, exact FWER control at signi�-
cance level α′FWE is a�orded by identifying a common critical value uFWE

α′ such that

P∩i∈I0Θ
(i)
0

(
Z0
max ≥ uFWE

α′
)

= α′FWE. (S2.84)

Given the form (S2.77) of the exceedance probability, the value of uFWE
α′ can be evaluated using

the numerical approach discussed in Section S.6.

Power and positive predictive value functions. With the maximum statistic and min-
imum statistic dependencies of minimal and maximal power of eqs. (S2.36) and (S2.40), the
parametric forms of the respective EPFs of eqs. (S2.81) and (S2.82), and the FWER controlling
critical value (S2.84) it follows that the minimal and maximal power functions for the current
example take the forms

βλmin : R>0 → [0, 1], θ 7→ βλmin(θ) := 1−

(∫ uFWE
α′

−∞
N(x; θ, σ2) dx

)m1

(S2.85)

and

βλmax : R>0 → [0, 1], θ 7→ βλmax(θ) :=

(
1−

∫ uFWE
α′

−∞
N(x; θ, σ2) dx

)m1

. (S2.86)
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As for the single test scenario, reparameterization in terms of Cohen's d results in the equivalent
expressions

βλmin : R>0 → [0, 1], d 7→ βλmin(d) := 1−

(∫ uFWE
α′

−∞
N(x;σd, σ2) dx

)m1

(S2.87)

and

βλmax : R>0 → [0, 1], d 7→ βλmax(d) :=

(
1−

∫ uFWE
α′

−∞
N(x;σd, σ2) dx

)m1

. (S2.88)

Finally, the introduction of a partial alternative hypothesis prior π induces the minimal and
maximal PPV functions

ψλmin : [0, 1]× R>0 → [0, 1], (π, d) 7→ ψmin(n, d) :=
πβλmin(d)

πβλmin(d) + α′FWE(1− π)
(S2.89)

and

ψλmax : [0, 1]× R>0 → [0, 1], (π, d) 7→ ψmin(n, d) :=
πβλmax(d)

πβλmax(d) + α′FWE(1− π)
. (S2.90)

We visualize the multiple testing scenario of the single-observation z-test in Figure S.3 for
the case of m := 100 simultaneously tested hypotheses. The upper and lower subpanels of
Figure S.3A visualize the exceedance probabilities Pθ (Zmax ≥ z) and Pθ (Zmin ≥ z). Note that
in comparison with the Z statistic of the single test scenario in Figure S.2A, the maximum
statistic exceedance probabilities are shifted to larger values of z, i.e., the maximum statistic
Zmax has a higher probability to exceed a given z value than the Z statistic, and decays faster.
Similarly, the minimum statistic exceedance probability mass is shifted to lower values of z, with
the same decay as the maximum statistic. In addition, the subpanels of Figure S.3A indicate
the critical value uFWE

α′ = 3.28 for a signi�cance level of α′FWE = 0.05 by a red line. Note that
in comparison to the single test scenario, this critical value is approximately twice as large.
The upper and lower panels of Figure S.3B visualize the ensuing minimal and maximal power
functions βλmin and β

λ
max, respectively, as a function of the e�ect size d and the partial alternative

hypothesis parameter λ ∈]0, 1[. Note that for both power types, a high level of λ implies a small
value of m0, which in turn results in a lower critical value uFWE

α′ , which for constant signi�cance
level and e�ect size, implies a higher value of the respective power function. This e�ect is
particularly prominent in the case of maximal power, which for comparable power levels requires
much higher e�ect size values when compared to minimal power, and exhibits a symmetry about
a partial alternative hypothesis parameter of λ = 0.5. Finally, the upper and lower subpanels
of Figure S.3C visualize the minimal and maximal PPV functions ψλmin and ψλmax for λ = 0.1,
respectively. Like for the single test scenario, the introduction of a partial alternative hypothesis
scenario prior probability results in a modulation of the respective power functions, which for
prior parameter values towards the boundaries π = 0 and π = 1 of the prior parameter space
render the PPV function less dependent on e�ect sizes than in the center of the prior parameter
space around π = 0.5.
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S.3. Minimum statistics EPFs

Minimum voxel height statistic EPF

The approximation of the EPF of the minimum voxel height statistic is based on the assumption
that for su�ciently high degrees of freedom the parametric expression of the expected Euler
characteristic of a non-central T -�eld (cf. Hayasaka et al. (2007, eq. (4)), Worsley et al. (1996,
eq. (3.1))) can serve both as an approximation for the probability of the maximum voxel height
statistic to exceed a value t > 0, as well as as an approximation for the probability of the
minimum voxel height statistic to fall below −t, i.e.,

P (Tmax ≥ t) ≈
3∑
d=0

Rd(S)ρd(t; δ, ν) ≈ P (Tmin < −t) for t > 0. (S3.1)

We then have for t > 0

P (Tmin < −t) ≈
3∑
d=0

Rd(S)ρd(t; δ, ν)⇔ P (Tmin < t) ≈
3∑
d=0

Rd(S)ρd(−t;−δ, ν). (S3.2)

With the transformation x ≈ 1−exp(−x) for small x ∈ R that is used in the SPM implementation
of RFT-based fMRI inference (cf. Friston et al. (1996, eq. (5)), Hayasaka et al. (2007, eq. (4)),
Ostwald et al. (2018, eq. (110))), we then have

P (Tmin < t) ≈ 1− exp

(
−

3∑
d=0

Rd(S)ρd(−t;−δ, ν)

)
(S3.3)

and hence

P (Tmin ≥ t) ≈ exp

(
−

3∑
d=0

Rd(S)ρd(−t;−δ, ν)

)
. (S3.4)

Minimum cluster extent statistic EPF

The approximation of the EPF of the minimum cluster extent statistic can be derived in analogy
to the approximation of the EPF of the maximum cluster extent statistic (cf. Friston et al.
(1994), Ostwald et al. (2018, Section 3.2)). To this end, let Mu denote the number of local
maxima within an excursion set at level u of a non-central T -�eld, and let

E(Mu) ≈
3∑
d=0

Rd(S)ρd(u; δ, ν) (S3.5)

denote the expected Euler characteristic approximation of the number of local maxima within an
excursion set at level u that also serves as the approximation to the expected number of clusters
within an excursion set at level u under RFT-based fMRI inference. Further, let C<k,u denote a
random variable that models the number of clusters within an excursion set at level u that have
an extent smaller than some constant k. As for its complement C≥k,u, which forms the basis for
the approximation of the EPF of the maximum cluster extent statistic, we assume that

C<k,u ∼ Poiss
(
λC<k,u

)
, (S3.6)

where
λC<k,u := E(Mu)P (Kj < k) = E(Mu)(1− P (Kj ≥ k)). (S3.7)
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That is, like the random variable C≥k,u, the random variable C<k,u is assumed to be distributed
according to a Poisson distribution, the expectation parameter of which is given by the product
of the expected number of clusters and, in contrast to C≥k,u, the probability of a cluster volume
to take on a value smaller than some constant k. Next, let Kj , j = 1, ..., c denote the volumes of
clusters j = 1, ..., c within an excursion set at level u, and let Kmin denote the minimum cluster
extent statistic de�ned in eq. (7). Then, with the de�nition of the random variable C<k,u, we
have for k ∈ R

P (Kmin ≥ k) = P (C<k,u = 0) . (S3.8)

In words, the probability that the minimum of the cluster extent statisticsKj within an excursion
set at level u is larger than or equal to k is identical to the probability that the number of clusters
within the excursion set that have a volume smaller than k is zero. With the Poisson form of
the distribution of C<k,u, it then follows that

P (Kmin ≥ k) =
λ0
C<k,u

0!
exp

(
−λC<k,u

)
= exp (−E(Mu)(1− P (Kj ≥ k))) . (S3.9)

and with (S3.5), we obtain

P (Kmin ≥ k) = exp

(
−

3∑
d=0

Rd(S)ρd(u; δ, ν)(1− P (Kj ≥ k))

)
. (S3.10)
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S.4. EPFs visualizations

In this Section, we visualize EPFs of the six test statistics of eqs. (4) - (7) that underlie
RFT-based fMRI inference and the power, PPV, and sample size calculations reported in the
current work. These visualizations allow for readily relating the respective power functions to the
distributional properties of the test statistics and in this way make the power functions discussed
and documented in the main text accessible.

Single test scenario statistics

As discussed in Methods, the single test statistics of interest in RFT-based fMRI inference are
the voxel height statistics Tv (cf. eq. (4)) and the cluster extent statistics Kj (cf. eq. (5)) with
EPFs provided in eqs. (15) and (16), respectively. In Figure S.4A we visualize the test-relevant
properties of the EPF of Tv. Speci�cally, the upper panel of Figure S.4A depicts the critical value
tα′ for exact tests with signi�cance level α′ = 0.05 as a function of the sample size n implied
by eq. (15) and evaluated using Algorithm 1. With increasing sample size, the critical value
decreases, re�ecting the lighter tail of the probability density function of Student's T -distribution
for high degrees of freedom. In the lower panel of Figure S.4A, we visualize the EPF of Tv as a
function of e�ect size d and sample sizes n = 10, 15, ..., 40. Here, each sample size-speci�c stack
re�ects a variation of the e�ect size d between 0.2 at the bottom of the stack and 0.8 at the
top of the stack. Naturally, as the e�ect size increases, more probability mass is allocated to
larger values of the test statistic outcome value t. In addition, the lower panel of Figure S.4A
indicates the critical values for an exact test with signi�cance level α′ = 0.05 at a given sample
size by a red vertical bar. The value of the EPF at the location of this critical value for a given
combination of sample and e�ect size corresponds to the power of the uncorrected voxel-level
test as visualized in Figure 1A of the main text.

Similarly, the test-relevant aspects of the EPF ofKj are visualized in Figure S.4B for a cluster-
de�ning threshold of u = 4.3. As for the voxel height statistic, the upper panel of Figure S.4B
depicts the critical value kα′ measured in number of voxels for exact tests with signi�cance level
α′ = 0.05 as a function of the sample size n implied by eq.(16) and evaluated using Algorithm
1. As sample size increases, the critical cluster extent value decreases as expected. In the lower
panel of Figure S.4B, we visualize the EPF of Kj as a function of e�ect size d and sample sizes
n = 10, 15, ..., 40. As in the lower panel of Figure S.4A, each sample size-speci�c stack re�ects
a variation of the e�ect size d between 0.2 (bottom) to 0.8 (top) and the critical values for an
exact test with signi�cance level α′ = 0.05 at a given sample size are indicated by red vertical
bars. Like for voxel height statistic, the value of the EPF at the location of the critical values
corresponds to the power of the uncorrected cluster-level test as visualized in Figure 1B of the
main text.

Multiple testing statistics

As discussed in Methods, the multiple testing statistics of interest are the maximum and min-
imum voxel height statistics Tmax and Tmin (cf. eq. (6)) with EPFs provided in eqs. (17) and
(16), respectively, as well as the maximum and minimum cluster extent statistics Kmin and Kmax

(cf. eq. (7)), with EPFs provided in eqs. (19) and (20), respectively. As in the main text, we
visualize test-relevant aspects of the EPFs in Figure S.5 based on the resel volumes R0(S) = 6,
R1(S) = 33, R2(S) = 354, and R3(S) = 705, and, for the minimum and maximum cluster extent
statistics, a cluster-de�ning threshold of u = 4.3.

The left upper panel of Figure S.5A depicts the critical values tFWE
α′ that a�ord FWER control

at a signi�cance level of α′FWE = 0.05 as a function of sample size n and the partial alternative
hypothesis parameter λ ∈ [0, 1] for d = 0 and evaluated using Algorithm 1. For λ = 0 the scenario
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Figure S.4. Critical values and exceedance probabilities for the single test voxel- and cluster-level statistics Tv
and Kj . The upper subpanels of panels (A) and (B) visualize the critical values tα′ and kα′ for exact single
tests of signi�cance level α′ = 0.05 as a function of sample size as red lines. These critical values were evaluated
using Algorithm 1. The exceedance probabilities corresponding to these critical values are depicted as blue line
and remain constant, as desired. The lower subpanels of panels (A) and (B) visualize the EPFs of eqs. (15)
and (16) as a function of sample size and e�ect size d. Speci�cally, for each sample size-speci�c EPF stack, the
e�ect size d varies between 0.2 at the bottom of the stack and 0.8 at the top of the stack. Additionally, the
�gure depicts the sample size-speci�c critical values for exact tests with signi�cance level α′ = 0.05 as red vertical
bars. The exceedance probabilities at the location of the red bars in the respective statistics outcome space
corresponds to the e�ect and sample size-dependent power values visualized in Figure 1. Note that as discussed
in the main text, neither EPF depends on resel volumes of the search space. For implementational details, please
see rftp_�gure_S4.m.

corresponds to the complete null hypothesis, and the critical values increase with decreasing
sample size. Compared to the single test scenario, the critical values are �ve to ten times as
large. Increasing λ and thus reducing the multiplicity of the multiple testing problem results
in a decrease of the critical values, which accelerates as λ approaches 1. In the right upper
panel of Figure S.5A, we visualize the associated exceedance probabilities that remain constant
around 0.05. The medium panel of Figure S.5A visualizes the EPF of Tmax. As for Tv and
Kj , the EPFs are visualized as sample size-speci�c stacks for n = 10, 15, ..., 40 and within each
stack, the e�ect size d varies from 0.2 (bottom) to 0.8 (top). For all stacks, λ is set to 1,
corresponding to the complete alternative hypothesis scenario. The red vertical bars re�ect the
sample size-speci�c critical values, and the values of the respective EPFs at the location of the
vertical bars correspond to the minimal power values at the voxel level for λ = 1. Finally, the
sample size-speci�c EPFs of Tmin are visualized in the lowermost panel of Figure S.5A. Note
that with respect to both the voxel height statistic (cf. Figure S.4A) and the maximum voxel
height statistic (cf. Figure S.5A), considerably less probability mass is allocated to positive
values of the statistic outcome value, re�ecting the lower probability that the minimum of the
voxel height statistics exceeds a given outcome value. As for Tmax, the red vertical bars indicate
the FWER-controlling critical values, and the value that the minimum statistic EPF assumes at
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Figure S.5. Critical values and EPFs for the multiple testing voxel- and cluster-level statistics. The left
uppermost panels of (A) and (B) visualize the critical values tFWE

α′ and kFWE
α′ for FWER-controlled voxel- and

cluster-level tests of signi�cance level α′FWE = 0.05 as a function of sample size n and partial alternative hypothesis
parameter λ ∈ [0, 1], respectively. Their associated exceedance probabilities are visualized in the right upper panels
of (A) and (B). The central panels visualize the EPFs of eqs. (17) and (19) as functions of sample size n and e�ect
size d. Speci�cally, for each sample size-speci�c exceedance probability stack, the e�ect size d varies between 0.2
at the bottom of the stack and 0.8 at the top of the stack. In addition, each panel depicts the sample size-speci�c
critical values for exact tests with signi�cance level α′FWE = 0.05 as red vertical bars. The color scale depicted for
P (Tmax ≥ t) applies to all four lower subpanels of the �gure. The lowermost subpanels of (A) and (B) visualize
the EPFs of eqs. (18) and (20) as functions of sample size n and e�ect size d as for their maximum counterparts.
For implementational details, please see rftp_�gure_S5.m.

the location of these bars corresponds to the sample size- and e�ect size-speci�c minimal power
of the FWER-controlled voxel-level test in the complete alternative hypothesis scenario. The
identical way of portrayal is used in Figure S.5B for the test-relevant aspects of the EPFs of
Kmin and Kmax. Note that in comparison to the single test scenario, the critical values kFWE

α′

depicted in the upper left panel of Figure S.5B are up to three times as large.
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S.5. Exemplary data set

The exemplary fMRI data set is part of a perceptual decision making simultaneous EEG/fMRI
data set that has been previously documented and made generally accessible in the standardized
BIDS format (Ostwald et al., 2012; Georgie et al., 2018). In the following, we brie�y sketch the
experimental procedures and fMRI data analyses that form the basis for the statistical parametric
map depicted in Figure 4.

Experimental procedure

Participants performed a visual perceptual decision task in a 2 × 2 factorial within-participant
design with experimental factors �stimulus coherence� (with levels �low� and �high�) and �spatial
prioritization� (with level �yes� and �no�). On each trial, a visual stimulus depicting either
a face or a car was presented in one visual hemi�eld. Individual stimuli were presented for
200 ms and the participant was asked to indicate via a button press whether the stimulus
depicted a face or a car. For the button presses, participants used their right index and middle
�nger for the two stimulus categories, and the mapping from stimulus category to response
button was counterbalanced across participants. The informativeness of the visual stimulus was
manipulated by altering the phase coherence of its spatial frequency spectrum resulting in low
and high stimulus coherence trials. On half of the trials, a cueing arrow shown continuously for
1 s prior to the stimulus indicated in which visual hemi�eld the stimulus would be presented.
Participants were asked to allocate their spatial attention to the respective visual hemi�eld,
while maintaining steady central �xation (spatial prioritization condition). On the other half
of the trials, the two-headed cuing arrow was uninformative and the stimulus was presented
randomly in either visual hemi�eld (no spatial prioritization condition). Face and car stimuli
were equally distributed across the four experimental conditions. The stimulus presentation order
was randomized. Participants were asked to respond as quickly and as accurately as possible with
an emphasis on responding as quickly as possible and to maintain stable �xation on the central
�xation cross throughout the experiment. For fMRI data acquisition, data from 90 trials for
each of the four conditions (half of them face stimuli) were recorded with an inter-trial interval
discretely randomized between 10 and 12 s. The 90 trials per condition were split into �ve
experimental runs, each lasting approximately 14 minutes.

fMRI data acquisition and analysis

fMRI data was acquired simultaneously with EEG at the Birmingham University Imaging Cen-
tre using a 3T Philips Achieva MRI scanner. T2*-weighted functional data were collected with
an eight-channel phased-array SENSE head coil. EPI data (gradient echo-pulse sequence) were
acquired from 32 slices (3x3x4 mm resolution, TR 2,000 ms, TE 35 ms, SENSE factor 2, �ip
angle 80 deg). Slices were oriented parallel to the AC-PC axis of the participant's brain and
positioned to cover the entire brain space. A mass-univariate summary-statistics GLM analysis
was performed to assess condition-induced e�ects at the group-level. SPM12 (V6906) was used
for both fMRI data preprocessing and statistical modelling. Prior to GLM parameter estimation
at the participant-level, fMRI data were motion-corrected by realigning EPI volumes to the �rst
volume of the �rst run of a given participant, normalized to MNI spaced using the SPM MNI-EPI
template, re-interpolated to 2 mm isotropic voxel size, and smoothed using an 8 mm isotropic
Gaussian kernel. The �rst-level GLM design matrix for each participant was then speci�ed in
run-wise, block-diagonal form. Here, each block comprised the four condition-speci�c stimulus
onset functions, convolved with the canonical haemodynamic response function, in the column-
wise order: high stimulus coherence/spatial prioritization, high stimulus coherence/no spatial
prioritization, low stimulus coherence/spatial prioritization, low stimulus coherence/no spatial
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prioritization. Per SPM defaults, the design matrices additionally comprised a constant run
o�set and a cosine basis function set implementing a temporal high-pass �lter with a cut-o� of
frequency 1/128 Hz. High-frequency residual error correlations were accounted for by SPM's de-
fault of approximating a �rst-order autoregressive process with white noise using parameterized
covariance basis functions. GLM beta and covariance component parameters were then estimated
using SPM's restricted maximum likelihood estimation scheme. Finally, ten participant-speci�c
COPE images were evaluated for the �high stimulus coherence > low stimulus coherence� con-
trast weight vector (1, 1,−1,−1) replicated over sessions and padded with zeros for regressors
of no interest. The resulting COPE images are available from the `Contrast Images' folder of
the accompanying OSF project. Finally, the COPE images were evaluated at the group-level
using voxel-wise one-sample T -tests, implemented in rftp_�gure_4.m, the resulting statistical
parametric map of which is available from the `One Sample T Test' folder in the accompanying
OSF project.
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S.6. Algorithms

Critical value algorithm for a desired signi�cance level

For a given test statistic γ(Y ) and desired signi�cance level α′, we use Algorithm 1 to numerically
evaluate the required critical value cα′ for a test that controls the Type I error rate at signi�cance
level α′.

Algorithm 1 Critical value evaluation for a desired signi�cance level

Input: Signi�cance level α′, step size δ
Output: Critical value cα′

1: Initialization: cα′ := 0, p := PΘ0(γ(Y ) > cα′)
2: while p > α′ do
3: cα′ := cα′ + δ
4: p := PΘ0(γ(Y ) > cα′)
5: end while

Algorithm A1 is implemented in the function u_fun.m.

Necessary sample size algorithm for a desired power level

For a given test statistic γ(Y ), desired signi�cance level α′, e�ect size d and, in the case of
a multiple testing scenario, partial alternative hypothesis parameter λ, we use Algorithm 2 to
numerically evaluate the required minimal sample size to achieve a desired power level β.

Algorithm 2 Necessary sample size evaluation for a desired power level

Input: Signi�cance level α′, step size δ, e�ect size d, partial alternative hypothesis parameter λ, desired power β
Output: minimum required sample size n
1: Initialization: n := 2, cα′ evaluation for n, λ, δ, PΘ1(γ(Y ) > cα′) evaluation for λ, d, and n
2: while PΘ1(γ(Y ) > cα′) ≤ β do

3: n := n+ 1
4: cα′ evaluation for n, λ, PΘ1(γ(Y ) > cα′) evaluation for λ, d, and n
5: end while

Algorithm A2 is implemented in the function n_fun.m.

Necessary sample size algorithm for a desired PPV level

For a given test statistic γ(Y ), desired signi�cance level α′, e�ect size d, prior hypothesis param-
eter π and, in the case of a multiple testing scenario, partial alternative hypothesis parameter
λ, we use Algorithm 3 to numerically evaluate the required minimal sample size to achieve a
desired PPV level ψ.

Algorithm 3 Necessary sample size evaluation for a desired PPV level

Input: Signi�cance level α′, step size δ, e�ect size d, partial alternative hypothesis parameter λ, hypothesis prior
parameter π, desired PPV ψ

Output: minimum required sample size n

1: Initialization: n := 2, cα′ evaluation for n, λ, δ,
π

1−πPΘ1
(γ(Y )>cα′ )

π
1−πPΘ1

(γ(Y )>cα′ )+α
′ evaluation for π, λ, d, and n

2: while
π

1−πPΘ1
(γ(Y )>cα′ )

π
1−πPΘ1

(γ(Y )>cα′ )+α
′ ≤ ψ do

3: n := n+ 1

4: cα′ evaluation for n, λ,
π

1−πPΘ1
(γ(Y )>cα′ )

π
1−πPΘ1

(γ(Y )>cα′ )+α
′ evaluation for π, λ, d, and n

5: end while

Algorithm A3 is implemented in the function n_fun.m.
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