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Abstract

P-values and null-hypothesis significance testing are popular data-analytical tools in functional neu-
roimaging. Sparked by the analysis of resting-state fMRI data, there has recently been a resurgence
of interest in the validity of some of the p-values evaluated with the widely used software SPM. The
default parametric p-values reported in SPM are based on the application of results from random field
theory to statistical parametric maps, a framework we refer to as RFP. While RFP was established
almost two decades ago and has since been applied in a plethora of fMRI studies, there does not exist a
unified documentation of the mathematical and computational underpinnings of RFP as implemented
in current versions of SPM. Here, we provide such a documentation with the aim of contributing to
contemporary efforts towards higher levels of computational transparency in functional neuroimaging.
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1. Introduction

Despite their debatable value in a scientific context, p-values and statistical hypothesis testing remain
popular data-analytical techniques (Fisher, 1925; Neyman and Pearson, 1933; Benjamin et al., 2018).
Given recent discussions about the reproducibility of quantitative empirical findings (e.g. Ioannidis,
2005; Button et al., 2013), there has been a resurgence of interest in the validity of p-values and statis-
tical hypothesis tests involved in the analysis of fMRI data with the popular software packages SPM
and FSL (Eklund et al., 2016; Mumford et al., 2016; Brown and Behrmann, 2017; Eklund et al., 2017;
Cox et al., 2017; Kessler et al., 2017; Flandin and Friston, 2017; Bowring et al., 2018; Geuter et al.,
2018; Turner et al., 2018; Slotnick, 2017b,a; Mueller et al., 2017; Eklund et al., 2018; Gopinath et al.,
2018b,a). The default parametric p-values reported in SPM and FSL are based on the application of
results from random field theory to statistical parametric maps and derive from the fundamental aim
to control the multiple testing problem entailed by the mass-univariate analysis of fMRI data (Friston
et al., 1994a; Poline and Brett, 2012; Monti, 2011; Ashburner, 2012; Jenkinson et al., 2012; Nichols,
2012). In brief, the p-values reported by SPM and FSL are exceedance probabilities of topological
features of a data-adapted null hypothesis random field model. Historically, this framework was es-
tablished in a series of landmark papers in the 1990’s, with some additional contributions in the early
2000’s (Friston et al., 1991; Worsley et al., 1992; Friston et al., 1994b; Worsley et al., 1996; Friston
et al., 1996; Kiebel et al., 1999; Jenkinson, 2000; Hayasaka and Nichols, 2003; Hayasaka et al., 2004).
In the following, we will collectively refer to this framework as “random field theory-based p-value
evaluation” (RFP).

While RFP was established almost two decades ago and has since been applied in a plethora of
functional neuroimaging studies, there does not exist a unified documentation of the mathematical and
computational underpinnings of RFP. More specifically, the early landmark papers on the approach
are characterized by an evolution of ideas which were often superseded by later developments. In these
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later developments, however, the RFP framework was not constructed from first principles again, such
that many important implementational details became rendered opaque. As concrete examples, the
conceptual papers by Friston et al. (1994b) and Friston et al. (1996) mention the expected Euler
characteristic, which is central to the current SPM implementation of RFP, only in passing. They
are also concerned with Gaussian random fields only, rather than the T- and F-statistical random
fields that are routinely assessed using RFP. Similarly, the technical papers by Kiebel et al. (1999),
Hayasaka and Nichols (2003), and Hayasaka et al. (2004) present variations on the estimation of RFP’s
null model parameters without a definite commitment to the approach that is currently implemented
in SPM. Finally, reviews of the approach, such as provided by Nichols and Hayasaka (2003), Friston
(2007b), Worsley (2007), and Flandin and Friston (2015) only cover certain aspects of RFP and usually
omit many computational details that would be required for its de-novo implementation. Given this
unsatisfying state of the RFP literature and the recent commotion with regards to the approach, we
reasoned that a comprehensive documentation of the mathematical and computational underpinnings
of RFP may help to alleviate uncertainties about the conceptual and implementational details of the
approach for neuroimaging analysis practitioners and theoreticians alike. Here, we thus aim to provide
such a documentation.

We chose to constrain our treatment by what probably constitutes the most important practical
aspect of the RFP approach: the SPM results table (Figure 1). We focus on the RFP implementa-
tion in SPM rather than FSL, because SPM remains the most commonly used software tool in the
neuroimaging community and because the origins of RFP are closely linked to the development of
SPM (Carp, 2012; Borghi and Van Gulick, 2018; Ashburner, 2012). More specifically, we focus on the
mathematical theory and statistical evaluation of the p-values reported in the set-level, cluster-level,
and peak-level columns, as well as the footnote of the results table of SPM12 Version 7219. Note that
in the following, all references to SPM imply a reference to SPM12 Version 7219. We particularly
address the application of RFP in the context of GLM-based fMRI data analysis, and do not discuss
other applications, such as in the analysis of M/EEG data (e.g., Kilner and Friston, 2010). Our guiding
example is a second-level one-sample T -test design as shown in Figure 1. With respect to multiple
testing control, we focus on the family-wise error rate (FWER)-corrected p-values and do not cover the
later addition of false discovery rate-corrected q-values (Chumbley and Friston, 2009; Chumbley et al.,
2010). With respect to FWER control, we focus on the evaluation of p-values rather than statistical
hypothesis tests. This is warranted by the fact that SPM de-facto only evaluates p-values, while statis-
tical hypothesis tests are performed by the SPM user, who typically decides to report only activations
at a given level of significance. Finally, from an implementational perspective, we primarily focus on
the functionality of the spm_list.m, spm_P_RF.m, spm_est_smoothness.m, and spm_resel_vol.c
functions and cover computational aspects of more low-level SPM routines only in passing. With these
constraints in place, we next review the outline of our treatment and preview the central points of each
section.

Overview

Overall, we proceed in three main parts, Section 2: Background, Section 3: Theory, and Section 4:
Application. In Section 2: Background, we establish a few key definitions from the two main pillars
of RFP: random field theory and geometry (Adler, 1981; Adler and Taylor, 2007). Specifically, in
Section 2.1: Real-valued random fields, we define the concept of a real-valued random field and discuss
some subtle but important aspects of this definition. Our definition rests on mathematical probability
theory, in which random variables are understood as mappings between probability spaces. For readers
unfamiliar with these measure-theoretic underpinnings of probability theory, we provide a short syn-
opsis of the required concepts in Supplement S1. After discussing a few analytical features of random
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Figure 1. The SPM results table for a second-level one-sample T -test design relating to the positive main effect of
visual stimulus coherence in a perceptual decision making fMRI study (Georgie et al., 2018). The central aim of this
work is to document the mathematical and computational underpinnings of the p-values listed in the SPM results table.
As indicated by the whitened parts of the table, we only consider corrected p-values related to FWER control. For
implementational details of the evaluation of the SPM results table using the SPM12 Version 7219 distribution, please
see rfp_1.m.
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fields (expectation and covariance functions, stationarity), we introduce the central classes of random
fields for RFP in Section 2.2: Gaussian and statistical random fields. As a toy example that we will
return to repeatedly, we introduce two-dimensional Gaussian random fields with Gaussian covariance
functions. Such Gaussian random fields have the feature that their smoothness in the RFP-sense can
be captured by a single parameter of their covariance function. We also introduce the central notions
of Z-, T - and F - fields, which we will often refer to as statistical random fields and consider as the the-
oretical analogues to statistical parametric maps that derive from the practical analysis of fMRI data.
In Section 2.3: Volumetrics we then introduce two geometric foundations of RFP, Lebesgue measure
and intrinsic volumes. These geometric concepts are of central importance in RFP, because the prob-
ability distributions of topological features of statistical random fields (for example, the probability of
the global maximum to exceed a given value) depend not only on the characteristics of the statistical
random field, but also on the volume of the space it extends over. In RFP, this dual dependency is
condensed in the notion of resel volumes. In brief, resel volumes are smoothness-adjusted intrinsic
volumes, which in turn are coefficients in a formula for the Lebesgue measure of tubes. The treatment
in Section 2.3 is necessarily shallow and emphasizes intuition over formal rigour.

Section 3: Theory is devoted to the theoretical development of RFP. The central part of this section
is the delineation of the parametric probability distributions used by RFP to capture the stochastic
behaviour of topological features of a statistical random field’s excursion set under the null hypothesis.
The exceedance probabilities of these parametric distributions for observed data are the p-values re-
ported in the SPM results table. We discuss the theory of RFP against the background of a continuous
space, discrete data point model. This model is conceived as the theoretical analogue to the familiar
mass-univariate GLM and is formally introduced at the outset of Section 3. Section 3.1: Excursion sets,
smoothness, and resel volumes then introduces three foundational concepts of RFP: excursion sets of
statistical random fields are subsets of the field’s domain on which the field exceeds a pre-specified value
u. In the applied neuroimaging literature, this value u (or, more specifically, its equivalent p-value) is
known as the cluster-forming threshold (Nichols et al., 2016) and has been at the center stage of the
recent debate on the validity of parametric p-values in fMRI data analysis (e.g., Flandin and Friston,
2017). The topological constitution of excursion sets, and hence the probability distributions of their
features, depends in a predictable manner on the value of u and on the smoothness of the underlying
statistical random field. In the applied neuroimaging literature, the smoothness measure employed by
RFP is known as “FWHM” (e.g., Eklund et al., 2016). In fact, the parameterization of a statistical
random field’s smoothness in terms of the full widths at half maximum (FWHMs) of isotropic Gaussian
convolution kernels applied to hypothetical white-noise Gaussian random fields conforms to a repa-
rameterization of a more fundamental smoothness measure and was introduced early on in the RFP
literature (Friston et al., 1991; Worsley et al., 1992). We introduce this more fundamental smoothness
measure in the Smoothness subsection of Section 3.1. To obtain an intuition about this measure, we
show analytically in Supplement S3 that for Gaussian random fields with Gaussian covariance functions
it evaluates to a scalar multiple of the covariance function’s length parameter. We close Section 3.1 by
introducing the FWHM reparameterization of smoothness and finally conjoining the probabilistic and
geometric threads of our exposition in the notion of resel volumes. Equipped with these foundations,
we then proceed to the core of RFP theory in Section 3.2: Probabilistic properties of excursion set
features. More specifically, upon establishing a set of expected values, we review the probability dis-
tributions of the following excursion set features as evaluated by the SPM implementation of RFP: (1)
the global maximum, (2) the number of clusters, (3) the cluster volume, (4) the number of clusters of
a given volume, and (5) the maximal cluster volume. We supplement this discussion with a review of
the relevant parametric distributions in Supplement S1 and number of proofs in Supplement S3. The
distributions of the global maximum and the maximal cluster volume are the distributions that endow
the SPM implementation of RFP with FWER control at the peak- and cluster-level, respectively. To
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this end, we review the principal idea of controlling the FWER by means of maximum statistics in
Supplement S2. With all theoretical aspects in place, we are then in the position to consider the
application of RFP theory in a GLM-based fMRI data-analytical setting.

We thus begin Section 4: Application by reconsidering the continuous space GLM introduced in
Section 3 from the discrete spatial sampling perspective of fMRI. In Section 4.1: Parameter estimation
we then discuss how RFP furnishes a data-adaptive null hypothesis model by estimating the smoothness
and approximating the intrinsic volumes of the statistical random field that underlies the observed data.
The estimated FWHM smoothness parameters and intrinsic volumes are combined in estimated resel
volumes, which form the pivot point between the data-driven and theory-based aspects of RFP. We
then close our treatment by considering the p-values reported in the SPM results table. As will become
evident, the p-values reported for set-, cluster-, and peak-level inferences can actually be evaluated using
a single (Poisson) cumulative distribution function that is adapted for different topological statistics
and data-based null model characteristics (Friston et al., 1996). Finally, in Section 5: Discussion, we
briefly explore potential future avenues for the further refinement of RFP.

In summary, we make the following novel contributions to the literature. From a scientific per-
spective, we provide a unified review of RFP, which is both mathematically comprehensive and com-
putationally explicit. As such, our treatment allows for the detailed statistical interpretation of the
experimental effects reported using RFP in the last decades. Further, given the recent discussions
on the validity of SPM’s cluster-level p-values, our treatment has the potential to serve as a readily
accessible starting point for the further refinements of RFP. Finally, from an educational perspective,
we provide a novel resource to introduce newcomers to the field of computational cognitive neuro-
science to one of functional neuroimaging’s equally most basic (univariate cognitive process mapping
using the GLM) and sophisticated (random field-based modelling) analysis tools. All custom written
Matlab code (The MathWorks, NA) implementing simulations and visualizations reported on herein
is available from https://osf.io/3dx9w/. The code repository also contains the group-level fMRI
data evaluated in Figure 1, and documented and revised versions of SPM’s parameter estimation and
p-value evaluation routines (rfp_spm_est_smoothness.m and rfp_spm_table.m, respectively). For
details, please refer to the OSF project documentation.

Prerequisites and notation

We assume throughout that the reader is familiar with the theoretical and practical aspects of GLM-
based fMRI analysis as presented for example in Kiebel and Holmes (2007); Monti (2011); Poline and
Brett (2012) and Poldrack et al. (2011). We presume that a familiarity with basic concepts of the
multiple testing problem entailed by the mass-univariate GLM-based analysis of fMRI data, as covered
for example in Brett et al. (2007); Nichols (2012) and Ashby (2011) is beneficial. As mentioned above,
we provide a synopsis of essential aspects from mathematical probability theory and the theory of
multiple testing in Supplement S1 and Supplement S2, respectively. In Table 1, we list mathematical
symbols that will be used throughout.

2. Background

2.1. Real-valued random fields

We commence by discussing some basic aspects of real-valued random fields. For comprehensive
introductions to the theory of random fields, see for example Christakos (1992), Abrahamsen (1997),
Adler (1981) and Adler and Taylor (2007) and for the required background material from mathematical
probability theory, see Supplement S1. We use the following definition:
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Symbol Meaning

N0, Nm, N0
m The sets N ∪ {0}, {1, 2, ...,m}, and {0, 1, ...,m}, respectively

|S| Cardinality of a set S
ei ith standard basis vector for Rd

||x||2 Euclidean norm of x ∈ Rd

|A| Determinant of a matrix A ∈ Rd×d

p.d. Positive-definite
inf, sup Infimum, supremum
∇f(x) Gradient of a function f : Rd → R at x
∂

∂xi
f(x) ith partial derivative of a function f : Rd → R at x, i = 1, ..., d

Γ(x) Gamma function evaluated at x ∈ R
P,E,C Probability, expectation, covariance
N(µ,Σ) Gaussian distribution
• End of definition
2 End of proof

Table 1. List of mathematical symbols. Note that the meaning of the symbol | · | is usually clear from the context.

Definition 1 (Real-valued random field). A real-valued random field {X(x)|x ∈ S} on a domain S ⊂ RD
is a set of random variables X(x) on a probability space (Ω,A,P), i.e., for each x ∈ S,X(x) : Ω → R
is a random variable.

•
A variety of notations for real-valued random fields exist. In the RFP literature, random fields are
most commonly denoted by “X(x), x ∈ S” (e.g., Worsley, 1994; Taylor and Worsley, 2007; Flandin
and Friston, 2015), a convention which we shall also follow herein. With regards to this notation, it is
important to realize that the symbol X(x) denotes a random variable, while it may look suspiciously
like the value of a function X evaluated for an input argument x. This is of course intentional: because
each X(x) of a real-valued random field is a real-valued random variable, it can be written as

X(x) : Ω→ R, ω 7→ X(x)(ω). (1)

In expression (1), X(x)(ω) denotes the value in R that X(x) takes on for the input argument ω ∈ Ω.
Because the double bracket notation X(x)(ω) is rather unconventional, an alternative notation mainly
used in the mathematical literature is to write a real-valued random field as

X : S × Ω→ R, (x, ω) 7→ X(x, ω), (2)

or to denote the constituent random variables of a real-valued random field by

Xx : Ω→ R, ω 7→ Xx(ω). (3)

The three different notations of expressions (1), (2) and (3) make the same point: for a fixed ω, X(x),
X, or Xx is a deterministic, real-valued function with domain S. The notation X(x) suppresses the
dependency of this function on the random elementary outcome ω, while the other two notations do
not. The clearest notation in this regard is perhaps offered by expression (2), but as mentioned above,
the notation X(x), x ∈ S seems to be preferred in the RFP literature. Crucially, and these notational
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subtleties aside, the domain S of random fields is commonly an uncountable infinite set (such as a D-
dimensional interval), which implies that a random field commonly comprises an uncountable infinite
number of random variables.

Two further aspects of Definition 1 are worth discussing. First, we chose the same letter for both
the random field (capital X) and the domain values (lowercase x), because on the one hand, we will
need to define specific random fields later on, and X is for the current purposes perhaps the most
generic choice, while on the other hand, x invokes a clearer notion of a spatial domain than, say, t.
In fact, t is a popular letter for the elements of the domain of a random field (e.g., Worsley (1994)).
However, because random fields will be used in the context of RFP for GLM-based fMRI data analysis
as spatial models, we prefer x. Second, we defined the domain S to be a subset of RD. We use the letter
S, because in the context of RFP, the domains of random fields of interest are typically referred to as
search spaces. Intuitively, the search spaces of interest in GLM-based fMRI data analysis correspond to
the brain (in whole-brain analyses) or brain regions of interest (in small volume correction analyses).
The D we have primarily in mind is D = 3, i.e., the case of random fields over three-dimensional
space, such as a volume of observed test statistics. For visualization purposes we will also consider the
case D = 2. In the case of D = 1, random fields are commonly referred to as random processes, or
perhaps even more often as stochastic processes. Finally, a linguistic remark: because, as the pinnacle
of mass-univariate GLM-based fMRI data analysis, RFP concerns only univariate statistical values, we
are in fact only concerned with real-valued (as opposed to, say, vector-valued) random fields. We will
therefore use the terms “real-valued random field” and “random field” interchangeably henceforth.

Expectation, covariance, and variance functions

Like random variables, random fields have certain analytical features that express their expected (or
“average”) behaviour over many realizations. These features, which generalize the concepts of a random
variable’s expectation and variance, are known as expectation, covariance, and variance functions. We
use the following definitions for these entities (Abrahamsen, 1997):

Definition 2 (Expectation, covariance, and variance functions). For a real-valued random fieldX(x), x ∈ S,
the expectation function is defined as

m : S → R, x 7→ m(x) := E(X(x)), (4)

the covariance function is defined as

c : S × S → R, (x, y) 7→ c(x, y) := C(X(x), X(y)) (5)

and the variance function is defined as

s2 : S → R≥0, x 7→ s2(x) := c(x, x). (6)

•
Note that the expectation and covariance expressions (4) and (5) are evaluated for the random variables
X(x) and X(x), X(y), respectively, with regards to the probability measure of the underlying prob-
ability space. Further note that the variance function is defined directly in terms of the expectation
and covariance functions.
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Stationarity

An important property of real-valued random fields, and a fundamental assumption for the random
fields considered in RFP, is stationarity. We define stationarity in the wide sense as follows (Abra-
hamsen, 1997):

Definition 3 (Wide-sense stationarity). A real-valued random field X(x), x ∈ S is called stationary in the
wide sense, if the expectation function (4) of X(x) is a constant function,

m : S → R, x 7→ m(x) := m̄ for m̄ ∈ R (7)

and the covariance function of X(x) is a function of the separation of its arguments only, i.e., for all
x, y ∈ S and d := x− y, the covariance function (5) can be written as

c : S → R, d 7→ c(d). (8)

•
In addition to stationarity in the wide sense, there exists the notion of stationarity in the strict sense
(Abrahamsen, 1997). Stationarity in the strict sense means that all finite-dimensional distributions of
a real-valued random field are invariant under arbitrary translations of their support arguments in the
domain of the real-valued field. Because stationarity in the wide and the strict sense are equivalent for
Gaussian and Gaussian-related random fields, which are our primary concern herein, and because the
concept of wide-sense stationarity is more readily applicable in the computational simulation of random
fields, we only formalize stationarity in the wide sense. Note, however, that in general, stationarity in
the strict sense implies stationarity in the wide sense, but not vice versa. Henceforth, we shall only use
the term “stationarity” to mean stationarity in the wide sense. Finally, note that stationary random
fields are also sometimes referred to as “homogeneous” random fields (e.g., Adler (1981), Worsley
(1995)).

The role of stationarity for RFP is fundamental, because, intuitively, it corresponds to the assump-
tion that the null hypothesis holds true at every location of the search space S, and the null hypotheses
over the entire search space are identical. More explicitly, defining m̄ := 0 for a stationary real-valued
random field corresponds to the assumption that the expected value of the random variable at each
location is 0, which, from the perspective of statistical testing is identical with the expectation of no
effect, i.e., the null hypothesis.

2.2. Gaussian and statistical random fields

Gaussian random fields

We next introduce a central class of random fields for RFP, Gaussian random fields, and use these to
make the abstract definitions of random fields, their associated expectation, covariance, and variance
functions, as well as the concept of stationarity more concrete.

Definition 4 (Gaussian random field). A Gaussian random field (GRF) on a domain S ⊂ RD is a random
field G(x), x ∈ S, such that every finite-dimensional vector of random variables

g := (G(x1), G(x2), ..., G(xn))T (9)

is distributed according to a multivariate Gaussian distribution.
•
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This definition implies that the random vector g is distributed according to a multivariate Gaussian
distribution for every choice of the xi, i = 1, ..., n and n ∈ N, such that we can write

g ∼ N(µ,Σ) for µ ∈ Rn,Σ ∈ Rn×n p.d. . (10)

Moreover, if we denote the expectation function and the covariance function of a GRF by m and c,
respectively, the expectation parameter µ ∈ Rn and covariance matrix parameter Σ = (Σij) ∈ Rn×n,
p.d. in expression (10) have the entries

µi = m(xi) and Σij = c(xi, xj) for i, j = 1, ..., n. (11)

Notably, expressions (10) and (11) achieve two things: first, they allow for reducing the fairly abstract
concept of a random field to the multivariate Gaussian distribution as a more familiar entity. Second,
they immediately imply a computational approach to obtain realizations from a GRF: if one defines a set
of discrete support points x1, ..., xn in the domain of a GRF of interest and evaluates the expectation
and covariance functions of the GRF at these points, one obtains an expectation parameter and a
covariance matrix that can be used as parameters for a multivariate Gaussian distribution random
vector generator. Of course, this requires that the expectation and covariance functions of the GRF
are defined as well.

Defining appropriate covariance functions and deciding whether a given function is actually a
suitable covariance function, such that the corresponding covariance matrix is positive-definite, is a
mathematical problem on its own (see e.g., Rasmussen and Williams (2006, Chapter 4), Abrahamsen
(1997)), and we will not delve further into this issue here. We do, however, provide an important
example of a valid covariance function, the so-called Gaussian covariance function (GCF) given by
(e.g., Christakos (1992, p. 71) and Powell et al. (2014, p. 5))

γ : S × S → R>0, (x, y) 7→ γ(x, y) := v exp

(
−||x− y||

2
2

`2

)
with v, ` > 0. (12)

Note that the variance function of a GRF with a GCF evaluates to

s2(x) = γ(x, x) = v, (13)

and that the GCF is de-facto a function of the scalar Euclidean distance

δ := ||x− y||2 ∈ R≥0 (14)

between x and y only. It may thus equivalently be expressed as

γ̃ : R≥0 → R>0, δ 7→ γ̃(δ) := v exp

(
−δ

2

`2

)
with v, ` > 0, (15)

for which v = γ̃(0). The parameter ` in eqs. (12) and (15) is a length constant and determines the
strength of the covariation of the random variable X(x) and X(y) at a distance δ = ||x−y||2 (Figure 2A
and B). Intuitively, the larger the value of `, the stronger the covariation at a given distance, and hence
the less variable the profile of GRF realizations over space. In Figure 2C, we visualize the dependency
of realizations of GRFs with GCF on the parameter `, for GRFs with domain S = [0, 1]×[0, 1] ⊂ R2 and
constant zero mean function. Note that the GCF is called “Gaussian” because of its functional form, and
not because we consider it in the context of Gaussian random fields. Further note that for a constant
mean function, GRFs with GCF are stationary. Finally, note that GRFs with D = 1 are known as
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Gaussian processes and enjoy some popularity in the machine learning community (Rasmussen, 2004;
Rasmussen and Williams, 2006).

Statistical random fields

Three additional random fields that derive from Gaussian random fields are of central importance
in RFP. These fields, often referred herein under the umbrella term statistical random fields, can be
considered the random field analogues of the Z-, T -, and F -distributions (Shao, 2003). Following
Worsley (1994) and Adler (2017), we define these fields as follows:

Definition 5 (Statistical random fields: Z-,T -, and F -fields). A Z-field on a domain S ⊂ RD is a stationary
Gaussian random field with constant expectation function m(x) := 0 and variance function s2(x) = 1.
Let

Z1(x), ..., Zn(x), x ∈ S (16)

be n independent Z-fields, i.e.,

C(Zi(x), Zj(x)) = 0 for all 1 ≤ i, j ≤ n, i 6= j, x ∈ S (17)

and let
C(∇Zi(x)) = C(∇Zj(x)) for all 1 ≤ i, j ≤ n, i 6= j, x ∈ S. (18)

Then

T (x) :=
Z1(x)

√
n− 1√∑n

i=2 Z
2
i (x)

, x ∈ S (19)

is called a T -field with n− 1 degrees of freedom. Finally, let

Z1(x), ..., Zn(x), Zn+1(x), ..., Zn+m(x), x ∈ S (20)

be n+m independent Z-fields, i.e.,

C(Zi(x), Zj(x)) = 0 for all 1 ≤ i, j ≤ n+m, i 6= j, x ∈ S (21)

and let
C(∇Zi(x)) = C(∇Zj(x)) for all 1 ≤ i, j ≤ n+m, i 6= j, x ∈ S. (22)

Then

F (x) :=
m
∑n

i=1 Z
2
i (x)

n
∑n+m

i=n+1 Z
2
i (x)

, x ∈ S (23)

is called an F -field with n,m degrees of freedom.
•

In the context of RFP, we conceive of Z-, T - and F -fields as the theoretical, continuous-space analogues
of statistical parametric maps, i.e., discrete-space spatial maps of realized Z-, T - and F -statistics (cf.
Friston, 2007a).

2.3. Volumetrics

A fundamental aspect of RFP is the fact that the probability distributions of topological features of
random fields, such as the maximum of a random field to exceed a given threshold value, depend on
(1) the stochastic characteristics of the random field and (2) the size of the search space over which the
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Figure 2. Realizations of Gaussian random fields with Gaussian covariance functions (GCFs). (A) Panel A visualizes
a GCF for a random field with two-dimensional domain D = 2 of the form of expression (12) with y = (0, 0)T with
parameters v = 1 and ` = 1. (B) Panel B visualizes GCFs for a random field with two-dimensional domain D = 2 of the
form of expression (15) with parameter v = 1 and varying length constants `. Note that the height of γ̃ at a distance δ
indicates the amount of covariation between two random variables at distance δ in the random field. (C) Panel C depicts
nine realizations of a Gaussian random field with domain S = [0, 1] × [0, 1] with 26 support points in each dimension,
corresponding to spatially arranged samples from a 26 dimensional multivariate Gaussian distribution of the form given
by expressions (10) and (11). Each realization is based on a Gaussian random field with Gaussian covariance function
of varying length parameter `, as indicated in the subpanel titles. Note that for larger values of `, and hence larger
covariation of two arbitrary random variables of the field at distance δ, the realizations show less variability over space,
and appear “smoother” than for smaller values of `. For the full implementational details of these simulations, please see
rfp_2.m.

11



random field extends. Intuitively, the larger the space over which the random field extends and the more
variable the random field per unit space, the higher the probability that, for example, the maximum
of the field exceeds a given threshold value. Because random fields are mathematically developed over
continuous space, the question of the size of a subset of a random field’s domain is not trivial and rests
on a large body of mathematical work that falls into the realms of differential and integral geometry
(Adler and Taylor, 2007, Part II). We here provide a bare minimum of terminology for describing
volumes in continuous space by focussing on the notions of Lebesgue measure and intrinsic volumes.
Lebesgue measure is a fundamental volume measure in mathematical measure theory and forms the
basis for the concept of intrinsic volumes. Intrinsic volumes in turn are the foundation for the concept
of resel volumes as discussed in Section 3.1: Excursion sets, smoothness, and resel volumes.

Lebesgue measure

Lebesgue measure is a fundamental building block of mathematical measure theory. Intuitively,
Lebesgue measure can be understood as deriving from the desire to allocate a meaningful notion
of volume to geometric objects that are modelled as subsets of RD. Specifically, the measure should
(a) be compatible with the usual notion of length, area, and volume for lines, rectangles, and cuboids,
respectively, (b) be smaller for an object A than for an object B, if A can be fit into object B, (c) be
invariant under translations of the object, and (d) be additive in the sense that if two objects do not
overlap, their joint volume is the sum of their individual volumes (Meisters, 1997). Lebesgue measure
is a measure that fulfils these properties for a large class of subsets of RD. A full development of
Lebesgue measure from first principles is beyond our current scope and can be found in many books
(e.g., Billingsley, 1978; Cohn, 1980; Stein and Shakarchi, 2009). Instead, we here provide a general
definition of Lebesgue measure based on Hunter (2011), discuss some of the intuition associated with
this definition, and finally list some values for the Lebesgue measure of some familiar geometric objects.

Definition 6 (Lebesgue outer measure, Lebesgue measure). Let

R = [a1, b1]× · · · × [aD, bD] ⊂ RD, with −∞ < ad ≤ bd <∞, d = 1, ..., D (24)

denote a D-dimensional closed rectangle with sides oriented parallel to the coordinate axes, let R
(
RD
)

denote the set of all such rectangles in RD, and let

ϕ : R
(
RD
)
→ [0,∞[, R 7→ ϕ(R) :=

D∏
d=1

(bd − ad) (25)

denote the volume of a rectangle in RD. Then the Lebesgue outer measure is defined as

λ∗ : P
(
RD
)
→ [0,∞], S 7→ λ∗(S) := inf

{ ∞∑
i=1

ϕ(Ri)|S ⊂ ∪∞i=1Ri, Ri ∈ R
(
RD
) }

, (26)

where the infimum is taken over all countable collections of rectangles whose union contains S, a set
S ⊂ RD is called Lebesgue measurable, if for every A ⊂ RD

λ∗(A) = λ∗(A ∩ S) + λ∗(A\S), (27)

and the Lebesgue measure is defined as the function

λ : P
(
RD
)
→ [0,∞], S 7→ λ(S) := λ∗(S). (28)
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•
The definition of Lebesgue measure thus rests on a familiar concept: the measure of a D-dimensional
rectangle corresponds to the product of its side lengths. For D = 1, this corresponds to the length of
a line, for D = 2 to the area of a rectangle (Figure 3A), and for D = 3 to the volume of a cuboid.
This familiar measure of the content of D-dimensional rectangles is used in Definition 6 to define
an approximation of the measure of arbitrary geometric objects modelled by a subset S ⊂ RD in
expression (26). Specifically, the Lebesgue outer measure of S is given by finding the smallest possible
value of the countable sum of rectangle volumes, the rectangles of which cover the set S of interest
(Figure 3B). Lebesgue measure itself is then defined as the Lebesgue outer measure restricted to a
subset of subsets of RD which fulfil the condition of eq. (27).

The definition of Lebesgue measure by Definition 6 is fairly abstract. For concrete subsets of RD
of geometrical interest, for example a circle in R2 or a cuboid in R3, it is not immediately clear how
to compute their Lebesgue measure based on this definition. Lebesgue measure has, however, many
mathematically desirable properties. For example, it can be shown that Lebesgue measure indeed fulfils
the desiderata (a) - (d) discussed above, and, for D-dimensional rectangles, simplifies to the volume
of rectangles (25). Some other noteworthy values of Lebesgue measure are the Lebesgue measures of
intervals in R,

λ(]a, b[) = λ([a, b[) = λ(]a, b]) = λ([a, b]) = b− a, (29)

and the Lebesgue measure of a closed ball B with radius r > 0 in RD,

λ(B) = λ
(
{x ∈ RD| ||x||2 ≤ r}

)
=

πD/2

Γ(D/2 + 1)
rD. (30)

Finally, Lebesgue measure forms the foundation for the notion of the intrinsic volumes of a subset of
RD as discussed next.

Intrinsic volumes

In general, intrinsic volumes can be thought of as measures of the 0- to D-dimensional size of a set S ⊂
RD. Historically, Worsley et al. (1992) introduced the RFP framework for three-dimensional excursion
sets only, for which it was assumed that the probability of them to touch the search space boundary
was negligible. For these excursion sets, Lebesgue measure as a measure of volume was sufficient.
Worsley et al. (1996) then introduced corrections for these “boundary effects” which require more
refined measures of volume. These more refined measures of volume are furnished by intrinsic volumes,
which appear in the mathematical literature under a variety of names, such as Quermassintegrale,
Minkowski functionals, Dehn-Steiner functionals, integral curvatures, and Euclidean Lipschitz-Killing
curvatures (Adler and Taylor, 2007; Adler et al., 2015; Adler, 2017). As for the Lebesgue measure,
a development of the concept of intrinsic volumes from first principles is beyond our scope. We thus
content with a general definition of intrinsic volumes, for which we attempt to provide some intuition,
and with listing some values for the intrinsic volumes of familiar geometric entities.

As a general definition of the intrinsic volumes of a D-dimensional search volume S ∈ RD, we use
the following implicit definition provided by Taylor and Worsley (2007, Appendix A.1.1) and Adler
et al. (2015, pp. 99 - 101)):

Definition 7 (Tube, intrinsic volumes). Let S ⊂ RD and let a tube TS,r of radius r around S be defined
as

TS,r := {x ⊂ RD|δ(x, S) ≤ r} with δ(x, S) := inf
y∈S
||x− y||2. (31)
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Then, for a convex set S ∈ R the Lebesgue measure of TS,r is given by

λ(TS,r) =

D∑
i=0

bD−ir
D−iµd(S) with bj :=

πj/2

Γ(j/2 + 1)
for j = D − i and i = 0, ..., D. (32)

and µ0(S), µ1(S), ..., µD(S) are the intrinsic volumes of S.
•

Note that the definition of the intrinsic volume µ0(S), ..., µD(S) of a set S ⊂ RD is implicit here in the
sense that the quantities µ0(S), ..., µD(S) appear as coefficients in the sum formula for the Lebesgue
measure of a tube, and no direct way of how to evaluate these coefficients is provided. Also note that
the bj correspond to the Lebesgue measures of unit balls in R (cf. (30) with r := 1). To gain some
insight into the meaning of this implicit definition of intrinsic volumes, we follow (Adler et al., 2015,
pp. 100-101) and discuss its application to a two-dimensional tube around a triangle (Figure 3C).
Here, the triangle corresponds to the set S ⊂ R2 in eq. (31). A two-dimensional tube TS,r of radius r
around S is then formed by considering all points x ∈ R2 for which the distance δ(x, S) between the
point x and the subset S is smaller than r ≥ 0. The characteristic shape of a tube is afforded by the
measure of distance δ(x, S): for its evaluation, all points y ∈ S are considered, their Euclidean distance
to x evaluated, and the distance between x and S then corresponds to the smallest distance between
any y ∈ S and x. This can be made more concrete by considering the tube around the triangle in
Figure 3C. First, consider the three sides of the triangle. Here, the smallest distance between a point
x ∈ R2 and a point y ∈ S is given by moving away from the triangle in a perpendicular manner.
However, at the three corners of the triangle, the smallest distance from the cornerpoint is given by the
corresponding arc of the circle of radius r centred on the triangle’s corner. By inspection of Figure 3C
it can be inferred that the Lebesgue measure of the tube TS,r, which in this two-dimensional scenario
corresponds to the area of the tube, comprises three principal contributions: the area of the original
triangle, the areas of the three rectangles at the sides of the triangle, and the contributions of the
disc sections at the three corners of the triangle. With a little geometric intuition, it can also be
inferred that these three disc sections in fact together form a full circle of radius r. Steiner’s formula
of expression (32) in the current context then states

λ(TS,r) = πr2µ0(S) + 2rµ1(S) + µ2(S). (33)

The first term in eq. (33) corresponds to the area of a circle with radius r, if µ0(S) = 1. Thus, the
0th-order intrinsic volume of a triangle appears to be 1. More generally, the 0th-order intrinsic volume
corresponds to the Euler characteristic of a subset S ⊂ RD, which will be discussed in Section 3.2:
Probabilistic properties of excursion set features. The second term in eq. (33) corresponds to the area
of the three rectangles of the tube, if µ1(S) measures the perimeter of the triangle (i.e., the sum of
its side lengths) and is multiplied by 1/2. Finally, it follows that µ2(S) must measure the area of the
triangle. Note that it is also possible to form a three- or higher dimensional tube around a triangle.
More generally, it can be shown that the intrinsic volumes of two-dimensional subsets S ⊂ R2 are given
by

µ0(S) : Euler characteristic of S
µ1(S) : 0.5 · Circumference of S
µ2(S) : Area of S,

(34)
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and for three-dimensional subsets S ⊂ R3 by

µ0(S) : Euler characteristic of S
µ1(S) : 2 · Caliper diameter of S
µ2(S) : 0.5 · Surface area of S
µ3(S) : Volume of S.

(35)

Here, the caliper diameter of a convex object is evaluated by placing the solid between two parallel
planes (or calipers), measuring the distance between the planes, and averaging over all rotations of
object. This kind of measurement can be formed using a caliper, a tool that is shown in Figure 3D. As
mentioned above, the concept of the Euler characteristic will be elaborated on below. As for Lebesgue
measure, it should be evident by now that evaluating the intrinsic volumes for a given geometric object
that is modelled as a subset of RD is not trivial. In Figure 3E, we collect the intrinsic volumes of a
number of elementary geometrical objects.

Finally, we note that in the context of RFP, the intrinsic volumes of the search space of interest
are evaluated numerically based on an algorithm proposed by (Worsley et al., 1996). This algorithm
implies that the first and second order intrinsic volumes in the case S ⊂ R3 can be decomposed into
contributions from one- and two-dimensional subspaces along the cardinal axes, i.e., that

µ1(S) = µx1
1 (S) + µx2

1 (S) + µx3
1 (S) (36)

µ2(S) = µx1x2
2 (S) + µx1x3

2 (S) + µx2x3
2 (S), (37)

where µxd1 (S) ∈ R, d = 1, 2, 3 denotes a contribution from the respective one-dimensional subspace
of R3, and µ

xixj
2 (S), 1 ≤ i, j ≤ 3, i 6= j denotes a contribution from the respective two-dimensional

subspace of R3. Inspection of the analytical intrinsic volumes in Figure 3E indicates that this decom-
position clearly holds for box-shaped geometric objects.

3. Theory

We develop the theory of RFP against the background of the continuous space, discrete data point
model

Yi(x) = miβ(x) + σZi(x) for i = 1, ..., n and x ∈ S ⊆ R3. (38)

Here, Yi(x) denotes a random variable that models the ith of n data observations at spatial location
x ∈ R3, mi ∈ Rp is a known space-independent vector of p model constraints (commonly the ith row
of a design matrix), β(x) is an unknown data point-independent value of a space-dependent effect size
parameter function β : R3 → Rp, σ > 0 is an unknown standard deviation parameter, and Zi(x) is
a Z-field modelling observation error. In line with Definition 5 we assume that the Zi(x), i = 1, ..., n
are independent and of identical gradient covariances. The model equation (38) should thus be read
as the generalization of the familiar mass-univariate GLM-based fMRI data analysis equation (e.g.,
Kiebel and Holmes, 2007, eq. 8.6) to continuous space, which entails that the data observations Yi(x)
are (usually non-stationary) random fields. In the context of GLM-based fMRI data analysis, eq. (38)
may represent a first-level model, in which case the mi are typically derived from the convolution of
condition-specific trial onset functions with a haemodynamic response function and it is assumed that
temporal error correlations have been accounted for by pre-whitening (e.g., Glaser and Friston, 2007).
Equivalently, eq. (38) may represent a second-level model in the summary statistics approach (e.g.
Mumford and Nichols, 2006), in which case themi typically represent categorical statistical designs and
comprise primarily ones and zeros, and the assumption of independent error contributions is natural.
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Figure 3. Lebesgue measure and intrinsic volumes. (A) A rectangle R with sides oriented parallel to the coordinate axes
in R2. (B) A visualization of Lebesgue outer measure. Consider the central object with the strong outline as a subset
S ⊂ R2. Then S can be covered by a (possibly infinite) union of rectangles, such that S ⊂ ∪∞i=1Ri. The panel shows
a coverage of S afforded by a finite number of rectangles. Clearly, in general the volume of the coverage overestimates
the volume of the object of interest. (C) A two-dimensional tube around a triangle. The central grey area shows the
triangle. The union of the triangle, the white rectangles, and the dark grey disc sections forms the two-dimensional tube
around the triangle. (D) A caliper. (E) Intrinsic volumes for a selected set of basic geometric shapes as listed in Worsley
et al. (1996, Table I)). Note that the intrinsic volumes of orders higher than the dimensionality of the geometric object
are zero.
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The fundamental aim of RFP is to evaluate the probabilities of topological features of statistical
parametric maps under the null hypothesis of no activation. With regards to the model of eq. (38),
such a null hypothesis corresponds to β(x) = 0 for all x ∈ R3. The null hypothesis thus entails that
the standardized data observations σ−1Yi(x), i = 1, ..., n are Z-fields. Consequently, the evaluation of
location-specific T - or F -ratios (cf. the right-hand sides of eqs. (19) and (23), respectively) results in
T - or F -fields. In the current section, we are concerned with the probabilistic theory of topological
features of these statistical random fields, which we will denote generically by X(x), x ∈ S. As outlined
in the Introduction, we first consider the fundamental RFP concepts of excursion sets, smoothness,
and resel volumes of statistical random fields. Building on these concepts, we then consider the theory
of the probabilistic properties of excursion set features. It should be noted that throughout this section
we assume a continuous model of space and the validity of the null hypothesis.

3.1. Excursion sets, smoothness, and resel volumes

Excursion sets

Excursion sets of statistical random fields above a level u ∈ R are an elementary building block in the
theory of RFP, because the topological features of statistical random fields that RFP is concerned with
are topological features of its excursion sets. We use the following definition (Worsley, 1994, Section
2, p. 14):

Definition 8 (Excursion set). Let X(x), x ∈ RD denote a statistical random field, let S ⊂ RD denote a
subset of RD referred to as the search space, and let u ∈ R denote a level. Then the excursion set of
X(x) inside the search space S above the level u is defined as

Eu := {x ∈ S|X(x) ≥ u}. (39)

•
In words, the excursion set Eu comprises all points x in the search space S for which the statistical
random fieldX takes on values larger or equal to u. In the neuroimaging literature, the level u is referred
to as the cluster-forming (or cluster-defining) threshold (Nichols et al., 2017; Flandin and Friston, 2017;
Eklund et al., 2016). Clearly, because X is a random entity, the excursion set is also a random entity.
From a probabilistic perspective, this entails that the characterization of excursion sets is concerned
with expectations and distributions of excursion set features, because the precise properties of an
excursion set vary from one realization of a statistical random field to another. Figure 4A visualizes
the excursion set above a level of u := 1 for four realizations of a Z-field with Gaussian covariance
function.

The probabilistic properties of topological features of excursion sets depend on many things. One
observation, which is exploited repeatedly in the theory of RFP, is the following insight: as the level u
increases, the constitution of an excursion set follows a predictable path (Figure 4B): at low values of u,
excursion sets typically display complex topological shapes, comprising multiple clusters, which in turn
may have parts that are not part of the excursion set and appear as cluster holes. At higher values of u,
holes tend to disappear and the number of clusters decreases. Finally, at very high values of u around
the level of the statistical random field realization’s global maximum, the excursion set comprises only
a single cluster (for u slightly smaller than the realization’s global maximum), a single point (for u
being equal to the global maximum), or no points at all (for all values of u that are larger than the
global maximum). As will be discussed below, this observation is used frequently in the approximation
of probabilistic properties of excursion sets. A second observation is that, naturally, the topological
properties of the excursion set at a fixed level u depend on the characteristics of the underlying
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statistical random field. Clearly, for general nonstationary random fields, regions characterized by
higher values of the expectation function than others have a higher probability of being contained
in the excursion set. For the stationary statistical random fields that are of interest in RFP, the
topological properties of excursion sets depend strongly on the field’s smoothness: smoother random
fields tend to have a more slowly and shallowly varying profile, while less smooth (rougher) random
fields typically display a more “peaky” profile. This results in the observation that excursion sets of
smooth statistical random fields either contain few, but larger clusters, while excursion sets of rough
statistical random fields contain more, but smaller clusters (Figure 4C).

Smoothness

As visualized in Figure 2 and Figure 4, realizations of random fields can be smooth, i.e., varying little
over a given spatial distance, or rough, i.e., varying strongly over a given spatial distance. This intu-
itive notion of smoothness is an important determinant of the probabilistic behaviour of topological
features of random fields and of central importance in RFP (Friston et al., 1991). Thus, in order to es-
tablish quantitative relationships between a statistical random field’s smoothness and the probabilistic
behaviour of its topological features, a quantitative measure of smoothness is required. The principle
measure used to quantify smoothness in RFP is the reciprocal unit-square Lipschitz-Killing curvature
(Taylor and Worsley, 2007, eq. 3), defined as

ς :=
1∫

[0,1]D |V (∇X(x)) |
1
2 dx

, (40)

where
V(∇X(x)) :=

(
C
(

∂

∂xi
X(x),

∂

∂xj
X(x)

))
1≤i,j≤D

(41)

denotes the D×D variance matrix of the gradient components (i.e., partial derivatives) of the random
field at x ∈ [0, 1]D. Note that we refer to V(∇X(x)) as a variance matrix (as opposed to a covariance
matrix ) despite the fact that entries of V(∇X(x)) are given by covariances. This is motivated by the
fact that these covariances refer to the partial derivatives of the identical random variable X(x) and
not to partial derivatives of covariances of two different random variables (Friston et al., 1991; Worsley
et al., 1992; Taylor and Worsley, 2007). In the following, we first attempt to elucidate in which sense
eqs. (40) and (41) capture the intuitive notion of a random field’s smoothness. We then discuss, how
eq. (40) is reformulated in RFP to give rise to the “full width at half maximum” parameterization
of smoothness. Throughout, we make the assumption that the random field’s gradient exists at all
locations of the random field’s domain, i.e., that the random field is differentiable with respect to space.

To obtain a first intuition in which sense eqs. (40) and (41) provide a measure of smoothness,
we consider the case of a stationary GRF on a one-dimensional domain (D = 1) with a GCF γ and
parameters v := 1 and ` > 0. In this case, the gradient of X at the location x ∈ [0, 1] simplifies to the
derivative of X with respect to x, which, in line with the conventions of spatial statistics, we denote by
Ẋ(x). Further, the variance matrix of the gradient components simplifies to the variance of this spatial
derivative, and the determinant to the absolute value, which in turn is redundant for a non-negative
variance. We are thus led to consider

ς =
1∫

[0,1] V(Ẋ(x))
1
2 dx

. (42)

We may first note that, regardless of the type of random field, the reciprocal of the square of the
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Figure 4. Excursion sets. (A) This panel visualizes the random nature of excursion sets. The upper row of four panels
depicts four realizations of a Z-field with a Gaussian covariance function with parameters v = 1, ` = 0.15. The lower four
panels depict the realization-specific excursion set for a fixed level of u = 1. Points included in the excursion sets are
marked white, points not included in the excursion sets are black. (B) This panel visualizes the topological properties
of the excursion set of a single Z-field realization (leftmost subpanel) as a function of the level value u. As u increases
from −0.5 to 2, the topological constitution of the excursion set becomes less complex, and, in the limit of high levels
u comprises a single cluster comprising the global maximum of the statistical random field’s realization or no points at
all. (C) This panel visualizes the dependency of the topological properties of the excursion set on the smoothness of the
statistical random field. The left two subpanels show a Z-field realization and its corresponding excursion set for u = 1
for a rough (non-smooth) field. The excursion set comprises many small clusters. The right two subpanels show the
same entities for a smoother field. Here, the excursion set comprises a smaller number of clusters, which are larger than
in the case of the rough Z- field. For implementational details of these simulations, please see rfp_4.m.
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variance of the spatial derivative of the random field at a location x is a sensible measure of the
field’s smoothness, if we assume that this value is constant over space: naturally, the spatial derivative
quantifies the rate of change of the values of the random field, and if this is high, the random field
changes a lot, if it is low, the random field does not change much. In addition, the variance describes
how variable this spatial variability is over realizations of the random field, and, if it is small, most
realizations of the random field with small spatial derivatives will appear smooth. Furthermore, for
the current example of a one-dimensional GRF with a GCF, one may analytically evaluate eq. (42)
and, as shown in Supplement S3.1, obtains

ς =
`√
2
. (43)

Thus, for the current scenario, the smoothness measure defined by eqs. (40) and (41) is directly related
to the spatial covariation parameter of the covariance function of the GRF. This is, of course, a special
case. An important aspect of eq. (40) is that it is defined as long as the partial derivatives of the
random field of interest are defined, but for many random fields it may not directly map onto a single
parameter of the field’s covariance function. This is analogous to the difference between a variance
of a random variable and the variance parameter of a univariate Gaussian distribution: while the
former concept applies to any random variable, the case that it directly maps onto a parameter of
the probability density function of a random variable, like the variance parameter of the univariate
Gaussian, is rather an exception.

More generally, the smoothness measure defined by eqs. (40) and (41) involves the determinants
of the spatial gradients at locations x ∈ [0, 1]D. Assuming again that the gradients are constant over
space, we next consider the two-dimensional scenario (D = 2). In this case, the determinant is given
by

|V(∇X(x))| = V
(

∂

∂x1
X(x)

)
V
(

∂

∂x2
X(x)

)
− C

(
∂

∂x1
X(x),

∂

∂x2
X(x)

)2

. (44)

As is evident from eq. (44), the variances and covariances of the field’s partial derivatives make
opposing contributions to the field’s smoothness: the variances of the partial derivatives contribute to
roughness, while the covariances of the partial derivatives contribute to the field’s smoothness. The
former was already observed for the one-dimensional scenario. The latter can be interpreted as follows:
a systematic simultaneous change of values in the direction of both the x1 and x2 ordinates indicates
smoothness. Finally, an intuition about the three-dimensional case is afforded by the intuitive view of
the determinant of a 3× 3 matrix as the magnification factor of the volume of a unit cuboid under the
linear transform furnished by the matrix (Hannah, 1996). In this case, large values for the off-diagonal
elements with respect to the diagonal elements imply a smaller magnification and vice versa, thus
implicating large variances of the partial derivatives in low smoothness and large correlations of the
partial derivatives in high smoothness. In summary, if a random field is differentiable with respect to
space, then eqs. (40) and (41) provide a sensible scalar measure of the intuitive notion of a random
field’s smoothness.

Smoothness reparameterization

While ς thus constitutes a perfectly fine scalar measure of a statistical random field’s smoothness,
Friston et al. (1991) and Worsley et al. (1992) proposed to reparameterize ς in the three-dimensional
case (D = 3) as

ς = (4 ln 2)−
3
2 fx1fx2fx3 with fx1 , fx2 , fx3 > 0. (45)
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In the context of RFP, the values fx1 , fx2 , fx3 are referred to as the full widths at half maximum
(FWHMs) in direction x1, x2 and x3, respectively. The reparameterization of smoothness in terms
of FWHMs oriented along the cardinal axes of three-dimensional space was motivated by assuming
that the realization of a statistical random field of interest had been created by convolving a GRF
with a white-noise covariance function with a Gaussian convolution kernel (see Supplement S3.2 for
formal definitions of these entities). In this case, the smoothness of the resulting statistical random
field depends on the spatial width of the Gaussian convolution kernel. The spatial width of a Gaussian
convolution kernel, in turn, can be described in terms of the covariance matrix of the kernel. If it is
assumed that the covariance matrix of the Gaussian convolution kernel is diagonal, then the width of
the convolution kernel is determined by the three diagonal parameters σ2

x1
, σ2

x2
and σ2

x3
, which govern

the widths of the respective one-dimensional marginal Gaussian functions of the convolution kernel.
An alternative representation of the width of a Gaussian function in turn is afforded by its FWHM: in
general, the FWHM of a function f is the value x for which f(−x/2) = f(x/2) = f(0)/2. As shown
in Supplement S3.2, for a univariate Gaussian function extending over the x1 domain with variance
parameter σ2

x, this value is given by
fx =

√
8 ln 2σx. (46)

In other words, the FWHM of a univariate Gaussian function is a scalar multiple of the square root of
its variance parameter. Eq. (45) was then motivated by approximating the variance matrix of partial
derivatives V(∇X(x)) of a given statistical random field X(x), x ∈ S by the variance matrix of partial
derivatives of a hypothetical random field Y (x), x ∈ S that was imagined to have been created by
the convolution of a white-noise GRF with an isotropic Gaussian convolution kernel parameterized in
terms of its FWHMs fx1 , fx2 , and fx3 . For such a field, the variance matrix of partial derivatives was
proposed to be independent of space and of the form (Worsley et al., 1992, eq. 2)

V(∇Y (x)) = 4 ln 2

f−2
x1

0 0
0 f−2

x2
0

0 0 f−2
x3

 =: Λ. (47)

For this hypothetical field, it then follows directly that

ς =

(∫
[0,1]D

|Λ|
1
2 dx

)−1

=
(
(4 ln 2)3(fx1fx2fx3)−2

)− 1
2 = (4 ln 2)−

3
2 fx1fx2fx3 . (48)

In Supplement S3.2 we show that the diagonal elements of the variance matrix of gradient components
of a three-dimensional white-noise GRF convolved with an isotropic Gaussian convolution kernel with
FWHMs fx1 , fx2 , and fx3 are indeed of the form implied by the right-hand side of eq. (47) (see Holmes
(1994) and Jenkinson (2000) for similar work). Note, however, that this only (at least partially)
validates the construction of the approximation, but not the approximation

V(∇X(x)) ≈ V(∇Y (x)), (49)

which is implicit in the reparameterization of the smoothness parameter of a given statistical random
field X(x), x ∈ S in terms of FWHMs, perse.

Resel volumes

Building on the parameterization of smoothness in terms of FWHMs, the concept of resel volumes was
introduced by Worsley et al. (1992). Intuitively, resel volumes are the smoothness-adjusted intrinsic
volumes of subsets of domains of random fields. Stated differently, the smoother a random field, the
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larger the resel volumes of subsets of its domain at constant intrinsic volumes. Based on the general
definition of intrinsic volumes for the three-dimensional case (35), the decomposition of the first- and
second-order intrinsic volumes (36), and the FWHM parameterization of a random field’s smoothness
(48), the resel volumes of a set S ⊂ RD in the domain of a random field are then defined as follows
(Worsley et al., 1996, pp. 63, eq. (3.2)):

Definition 9 (Resel volumes). Let X(x), x ∈ R3 denote a statistical random field with smoothness

ς = (4 ln 2)−
3
2 fx1fx2fx3 (50)

and let S ⊂ R3 denote a subset of the domain of the statistical random field. Then the 0th- to 3rd-order
resel volumes of S are defined in terms of the intrinsic volumes of S and the smoothness parameters
fx1 , fx2 and fx3 by

R0(S) := µ0(S) (51)

R1(S) :=
1

fx1

µx1
1 (S) +

1

fx2

µx2
1 (S) +

1

fx3

µx3
1 (S) (52)

R2(S) :=
1

fx1fx2

µx1x2
2 (S) +

1

fx1fx3

µx1x3
2 (S) +

1

fx2fx3

µx2x3
2 (S) (53)

R3(S) :=
1

fx1fx2fx3

µ3(S) (54)

•
The resel volumes of a given set S ⊂ R3 can thus be readily evaluated if the intrinsic volumes of S
and their subspace contributions, as well as the FWHM smoothness parameters fx1 ,fx2 , fx3 of the
statistical random field extending over S, are known.

3.2. Probabilistic properties of excursion set features

The probabilistic properties of the following five topological features of excursion sets of statistical
random fields form the core of RFP theory: (P1) the global maximum of the statistical random field,
(P2) the number of clusters within an excursion set, (P3) the volume of clusters within an excursion set,
(P4) the number of clusters of a given volume within an excursion set, and (P5) the maximal volume
of a cluster within an excursion set. In the theory of RFP, these topological features are described by
random variables, the probability distributions of which are governed by the stochastic and geometric
characteristics of the underlying statistical random field and the level u of the respective excursion sets.
The dependencies of the respective distributions on the properties of the underlying statistical random
field and the excursion set level are mitigated by four expected values: (E1) the expected volume
of an excursion set, (E2) the expected number of local maxima within an excursion set, (E3) the
expected number of clusters within an excursion set, and (E4) the expected volume of a cluster within
an excursion set. In the following, we first discuss the parametric dependencies of these expectations
on the type of statistical random field and its resel volumes, i.e., its smoothness and intrinsic volumes.
We then discuss the probability distributions of the five topological features that form the core of
RFP theory. As will become evident throughout this section, a defining characteristic of RFP theory
is that the parametric distributional forms of virtually all topological features of interest derive from
approximations, rather than analytical transforms of the probability density functions describing the
statistical random fields under functions that instantiate the topological features. For the presentation
of RFP theory herein, this entails that we will most often only report the parametric distributional
form of a given topological feature under RFP and discuss some background about its motivation,
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rather than analytically deriving the respective parametric distributional form from first principles.
The approximative-parametric nature is inherent to RFP and is rooted in the seminal works by Adler
and Hasofer (1976) and Adler (1976) and has more recently seen major advances by Taylor et al. (2005,
2006) and Adler and Taylor (2007) (see also Adler (2000) for a historical perspective).

Expected values

(E1) The expected volume of an excursion set

Recall that an excursion set Eu is a subset of the search space S for which a statistical random field
takes on values larger or equal to u ∈ R. As discussed above, the standard analytical measure that
assigns a notion of volume to subsets of RD is the Lebesgue measure λ, which returns the Lebesgue
volume λ(Eu) of the excursion set. As discussed by Adler (1981, Section 1.7, pp. 18 - 19), the expected
value of the Lebesgue volume of an excursion set is given by

E (λ(Eu)) = λ(S)(1− FX(u)), (55)

where λ(S) denotes the Lebesgue volume of the search space and FX denotes the distribution function
of the statistical random field at the origin (see also Hayasaka and Nichols (2003, eq. 4) and, for
Z-fields, Friston et al. (1994b, eq. 3)). Because for stationary random fields, this distribution function
equals the distribution functions at all other locations of the random field, we denote it by FX without
reference to its spatial position. A brief derivation of eq. (55) is provided in Supplement S3.3. As it
stands, eq. (55) has strong intuitive appeal: the expected value of the excursion set Eu is a proportion
of the search space S, and the proportion factor is given by the probability of the statistical random
field to take on values larger than u at each point in space. For example, for small values of u, the
probability that the statistical random field takes on values larger than u is always higher than for
larger values of u. Accordingly, the expected value of the volume of the excursion set is larger in the
former than in the latter case. From eq. (55), it follows directly that if the three-dimensional volume
of the search space is expressed in terms of the third-order resel volume R3(S), then the expected
third-order resel volume of the excursion set is given by

E(R3(Eu)) = R3(S)(1− FX(u)). (56)

In the following, we will denote the random variable modelling the expected volume of an excursion set
independent of its unit of measurement by Vu, where Vu := λ(Eu) or Vu := R3(Eu) depending on the
specified context. We visualize the expected volume of the excursion set as a function of u and R3(S)
in Figure 5B. As is evident from this visualization, the expected volume of an excursion set E(Vu)
decreases with higher cluster-forming thresholds u and higher statistical random field smoothness, i.e.,
decreasing third-order resel volume R3(S).

(E2) The expected number of local maxima within an excursion set

Let Mu denote the number of local maxima of a statistical random field X(x), x ∈ RD above u
inside a set S ⊂ RD. Then Mu is also the number of local maxima of the excursion set Eu. In RFP,
the expected number of local maxima of a statistical random field is approximated by the expected
Euler characteristic χ(·) of the excursion set (Worsley, 1994, Section 2, p. 15), i.e.

E(Mu) ≈ E(χ(Eu)). (57)

To unpack expression (57), we first discuss the notion of the Euler characteristic as a topological
measure. We then consider the motivation for the approximation of expression (57), and finally discuss
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the parametric closed form for the expected Euler characteristic used in RFP.
The Euler characteristic is a function and is referred to as a topological invariant. Topological

invariants measure the geometrical characteristics of geometrical objects irrespective of the way they
are bent. A formal description of the Euler characteristic is beyond our current scope, because, as
Adler (2000, p.16) puts it, the Euler characteristic “(...) is one of those unfortunate cases in which
what is easy for the human visual system to do quickly and effectively requires a lot more care when
mathematicised”. This care is not warranted here, because, as will be seen below, the expected Euler
characteristic of the excursion set Eu will itself be approximated by a function of u without recourse to
an actual evaluation of χ(Eu). We thus only provide a brief intuition for the Euler characteristic itself:
for a three-dimensional volume of interest, the Euler characteristic counts, in an alternating sum, the
number of three types of topological features: (1) connected components, (2) visible open holes, often
referred to as handles, and (3) invisible voids. Semi-formally, the Euler characteristic of an excursion
set Eu is hence given by

χ(Eu) = Number of connected components of Eu
−Number of handles of Eu
+Number of voids in Eu.

(58)

The following examples for familiar geometric objects provided by Worsley (1996a) are instructive:

χ(Eu) = 1 for a single solid excursion set (1 connected component - 0 handles + 0 voids),
χ(Eu) = 0 for a doughnut-shaped excursion set (1 connected component - 1 handles + 0 voids),
χ(Eu) = −2 for a pretzel-shaped excursion set (1 connected component - 3 handles + 0 voids),
χ(Eu) = 2 for a tennisball-shaped excursion set (1 connected component - 0 handles + 1 voids).

More qualitatively, if an excursion set comprises many disconnected components, each with very few
holes (in astrophysics referred to as a “meatball” topology), the Euler characteristic is positive; if the
clusters of an excursion set are connected by many bridges, thus creating many holes (in astrophysics
referred to as a “sponge” topology), the Euler characteristic is negative, and if the excursion set com-
prises many surfaces that enclose hollows (in astrophysics referred to as a “bubble” topology), the Euler
characteristic is again positive.

In the theory of RFP, it is, however, not the value of the Euler characteristic for a specific realization
of an excursion set that is of primary interest, but rather its expected value - as evident from the right-
hand side of expression (57). This approximation (or “heuristic”) is based on the following intuition:
as the threshold value u that defines the excursion set Eu increases, voids and handles of the excursion
set tend to disappear, and what remains are isolated connected components of the excursion set (in
the neuroimaging literature referred to as clusters). In this scenario, χ(Eu) thus counts the number
of connected components (cf. eq. (58)). Each of the clusters in the excursion set naturally contains
a local maximum of the excursion set, which thus motivates to approximate the expected number
of local maxima by the expected Euler characteristic over realizations of the statistical random field
X(x). As for the accuracy of this approximation, it has been demonstrated that it becomes exact in
the limit of very high values of u, in which χ(Eu) evaluates to either 1 (one remaining cluster) or 0 (no
remaining clusters) (Taylor et al., 2005). For lower values of u, an analytical validation does not seem
to exist so far. Crucially though, the approximation in expression (57) is helpful from a mathematical
perspective, because there exists a parametric closed form for the expected Euler characteristic. This
parametric closed form was introduced by (Worsley et al., 1996, eq. 3.1) and is given by

E(χ(Eu)) =

D∑
d=0

Rd(S)ρd(u), (59)
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where the Rd(S), d = 0, ..., D are the d-dimensional resel volumes of the search space and the ρd(u)
are referred to as Euler characteristic (EC) densities. The formula on the right-hand side of eq. (59)
is powerful because it decomposes the expected value of the Euler characteristic into (1) smoothness-
adjusted volumetric contributions from each of the d = 0 to d = D dimensions of the search space, and
(2) unit volume-smoothness densities ρd that only depend on the value of u and the type of statistical
random field on the other hand. We have already discussed the meaning of the Rd in Section 3.1 and
hence focus on the EC densities in the following. Intuitively, the functions

ρd : R→ R, u 7→ ρd(u) for d = 0, ..., D (60)

describe the contribution of unit smoothness resel volumes to the expected value of the Euler charac-
teristic. The values taken by these functions depend on u, and in general, as the value of u increases
(i.e., the excursion set is formed based on a higher threshold), these values decrease. For constant resel
volumes, this implies that the value of the expected Euler characteristic, and thus the approximated
expected number of local maxima, decreases. The exact parametric forms of the function ρd depend
on the type of statistical random field and have been analytically evaluated by Worsley (1994). We
list their functional forms in Table 2 and visualize their form based on their SPM implementation in
Figure 5A. Note that the 0th order EC density of each field corresponds to 1− FX(u), where FX de-
notes the distribution function of the respective field. This allows for evaluating the expected volume
of the excursion set as expressed in eq. (56) in terms of the third order resel volume and the 0th
order EC density. In summary, the expected number of local maxima of an excursion set can thus
be approximated for a given statistical random field in a straight-forward manner, if the field’s resel
volumes are known (or have been estimated).

(E3) The expected number of clusters within an excursion set

In the SPM implementation of RFP, the expected number of clusters is approximated by the
expected Euler characteristic (Friston et al., 2007, Chpt. 18, pp. 233-234, Chpt. 19, pp. 240-241).
This means that the approximations of the expected number of local maxima and the approximation
of the expected number of clusters are identical. This identity entails the assumption that each cluster
contains only a single local maximum of the excursion set. Cast more formally, let Mu denote the
number of local maxima of an excursion set Eu, and let

M := {m1, ...,mMu} ⊂ Eu (61)

denote the set of local maxima of Eu. Clusters are unconnected components of the excursion set and
thus form a partition Pu of Eu, i.e.,

Pu = {C1, ..., CCu} with Ci ∪ Cj = ∅ for i 6= j and ∪Cui=1 Ci = Eu, (62)

where
Cu := |Pu| (63)

denotes the number of clusters. While each cluster contains at least one local maximum, in general it is
very well possible that a given cluster comprises multiple local maxima. This is also a common finding
in the actual analysis of fMRI data using SPM, in which case the local maxima for large clusters are
indeed listed in the SPM results table based on a distance selection criterion of typically larger than 8
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Z-field Euler characteristic densities

ρ0(u) =
∫∞
u

1

(2π)1/2
exp

(
−t2/2

)
dt

ρ1(u) =
(4 ln 2)1/2

2π
exp

(
−u2/2

)
ρ2(u) =

4 ln 2

(2π)3/2
exp

(
−u2/2

)
u

ρ3(u) =
(4 ln 2)3/2

(2π)2
exp

(
−u2/2

)
(u2 − 1)

T -field Euler characteristic densities

ρ0(u; ν) =
∫∞
u

Γ( ν+1
2 )

√
νπΓ( ν2 )

(
1+ t2

ν

)−1/2(ν+1) dt

ρ1(u; ν) =
(4 ln 2)1/2

2π

(
1 + u2

ν

)−1/2(ν−1)

ρ2(u; ν) =
(4 ln 2)Γ( ν+1

2 )
(2π)3/2( ν2 )

1/2
Γ( ν2 )

(
1 + u2

ν

)−1/2(ν−1)

u

ρ3(u; ν) =
(4 ln 2)3/2

(2π)2

(
1 + u2

ν

)−1/2(ν−1) (
ν−1
ν
u2 − 1

)
F -field Euler characteristic densities

ρ0(u; ν1, ν2) =
∫∞
u

Γ((ν1+ν2)/2)
Γ(ν1/2)Γ(ν2/2)

ν1
ν2

(
ν1
ν2
t
)1/2(ν1−2) (

1 + ν1t
ν2

)−1/2(ν1+ν2)

dt

ρ1(u; ν1, ν2) =
(4 ln 2)1/2

(2π)1/2
Γ((ν1+ν2−1)/2)21/2

Γ(ν1/2)Γ(ν2/2)

(
ν1u
ν2

)1/2(ν1−1) (
1 + ν1u

ν2

)−1/2(ν1+ν2−2)

ρ2(u; ν1, ν2) =
4 ln 2
2π

Γ((ν1+ν2−2)/2)
Γ(ν1/2)Γ(ν2/2)

(
ν1u
ν2

)1/2(ν1−2) (
1 + ν1u

ν2

)−1/2(ν1+ν2−2) (
(ν2 − 1) ν1u

ν2
− (ν1 − 1)

)
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(4 ln 2)3/2

(2π)3/2
Γ((ν1+ν2−3)/2)2−1/2

Γ(ν1/2)Γ(ν2/2)

(
ν1u
ν2

)1/2(ν1−3) (
1 + ν1u

ν2

)−1/2(ν1+ν2−2)

×
(
(ν2 − 1)(ν2 − 2)

(
ν1u
ν2

)2

− (2ν1ν2 − ν1 − ν2 − 1) ν1u
ν2

+ (ν1 − 1)(ν1 − 2)

)
Table 2. Euler characteristic densities for Z-fields and for T - and F -fields with ν and ν1, ν2 degrees of freedom,
respectively. Note that the 0th-order Euler characteristic densities correspond to complementary distribution functions
of Z, T and F random variables. Reproduced from Table II in Worsley et al. (1996).

mm apart. The validity of the approximation chain

E(Cu) ≈ E(Mu) ≈ E(χ(Eu)) =

D∑
d=0

Rd(S)ρd(u), (64)

thus strongly rests on the assumption of high values for the excursion set-defining threshold u: in the
case that only the global maximum of the random field is contained in the single connected component of
the field’s excursion set, the number of local maxima of the excursion set and the number of clusters are
identical with probability one. In Figure 5B, we visualize the expected number of clusters E(Cu) within
an excursion set over a range of values for u and interpolations of the resel volumes R0(S), ..., R3(S) of
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the exemplary data set underlying Figure 1. As is evident from this visualization, the expected number
of clusters within an excursion set decreases with increasing values for the cluster-forming threshold
and increasing smoothness of the statistical random field, corresponding to decreasing resel volumes.

(E4) The expected volume of clusters within an excursion set

The expected volume of a single cluster is evaluated in RFP based on the expressions for (1) the
expected volume of the excursion set, and (2) the expected number of clusters in such an excursion
set. For a value u ∈ R, let the cluster volume be defined by the random variable

Ku :=
Vu
Cu

. (65)

Then, if Vu and Cu are independent random variables with finite expected values, the expected cluster
volume is given by

E(Ku) =
E(Vu)

E(Cu)
(66)

(e.g., Friston et al. (1996, eq. 2), Hayasaka and Nichols (2003, eq. 3)). Naturally, if the expected
volume of the excursion set is expressed in terms of Lebesgue measure, i.e., Vu = λ(Eu), eq. (66)
denotes the expected cluster Lebesgue volume, and if the expected volume of the excursion set is
expressed in terms of third-order resel volume, i.e., Vu = R3(Eu), eq. (66) denotes the expected cluster
resel volume. We visualize the expected cluster resel volume as a function of the cluster-forming
threshold and the smoothness of the statistical random field in Figure 5B. As is evident from this
visualization, the expected cluster resel volume decreases with increasing values of the cluster-forming
threshold and increasing statistical random field smoothness.

Probability distribution of excursion set features

(P1) The distribution of the global maximum of a statistical random field

Historically, the distribution of the global maximum of a statistical random field has been one of the
seeds of the RFP framework (Worsley et al., 1992). This is because maximum statistics afford FWER
control in multiple testing scenarios, as we show in Supplement S2. To introduce the distribution of
the global maximum used in RFP, let

Xm := max
x∈S

X(x) (67)

denote the global maximum of the statistical random field X(x) on a set S. In RFP, the probability
distribution of the global maximum is specified in terms of its distribution function, which is assumed
to be of the following form (e.g., Worsley et al. (1992, eqs. 1,6), Worsley et al. (1996, eq. 3.1))

FXm : R→ [0, 1], u 7→ FXm(u) := 1− E(χ(Eu)). (68)

The reasoning behind this form is similar to that justifying the approximation of the expected number
of local maxima by the expected Euler characteristic: first, if the excursion set defining value u is
high enough, Eu will not comprise any handles and voids any more. Second, in the limit of even
higher values u, there will remain only one connected component comprising the global maximum or
no connected component at all. In this case, the Euler characteristic of the excursion set can assume
only the values 1 or 0: if the global maximum is equal to or larger than the excursion set defining
value, i.e., if Xm ≥ u, the Euler characteristic will assume the value 1, i.e., χ(Eu) = 1. If the global
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Figure 5. Probabilistic properties of excursion set features. (A) Euler characteristic densities. The panels depict,
from left to right, the Z-field Euler characteristic (EC) densities, the T -field EC densities for a T -field with 15 degrees of
freedom and the F -field EC densities for an F -field with (1,20) degrees of freedom. (B) Excursion set feature expectations
for a T -field with 15 degrees of freedom. From left to right, the panels show the expected excursion set volume E(Vu) in
units of resels, the expected number of clusters E(Cu), and the expected cluster volume E(Ku) in resels as a function of
the excursion set level u and a parameterization of smoothness. For the expected excursion set volume, this smoothness
parameter is given by the third-order resel volume. For the remaining panels, including the panels in (C), we selected
the resel volumes of the exemplary data set (cf. Figure 1) given by R0(S) = 6.0, R1(S) = 32.8, R2(S) = 353.6, and
R3(S) = 704.6 and evaluated (59) over a range of scalar multiples wRd, d = 0, 1, 2, 3. The value of w ∈ [0, 5] is displayed
on the x-axis. Note that smoothness increases with decreasing resel volumes. (C) Excursion set feature probability
distributions for a T -field with 15 degrees of freedom as functions of smoothness. From the left to right, the panels show
the probability for the maximum of the statistical random field to exceed a value u, P(Xm ≥ u), the probability for the
number of clusters within an excursion set to assume a value c, P(Cu = c), the log probability density for a cluster to
assume a volume k, fKu(k). (D) The distribution of the number of clusters of a given volume within an excursion set.
The panels depict P(C≥k,u = c) as a function of u and k.

28



maximum is smaller than the excursion set defining value, i.e., if Xm < u, the Euler characteristic will
assume the value 0, i.e., χ(Eu) = 0. That is, in the limit of high values for u, the Euler characteristic
χ(Eu) of the excursion set can be conceived as a random variable taking on values in the set {0, 1}
with a probability mass function defined in terms of the mutually exclusive event probabilities

P(χ(Eu) = 0) := P(Xm < u) and P(χ(Eu) = 1) := P(Xm ≥ u). (69)

Evaluating the expected value E(χ(Eu)) in this scenario then yields

E(χ(Eu)) = P(χ(Eu) = 0) · 0 + P(χ(Eu) = 1) · 1 = P(Xm ≥ u). (70)

With the definition of the cumulative distribution function of a continuous random variable (cf. Sup-
plement S1), expression (68) then follows directly.

It is instructive to consider the dependency of the probability for the global maximum to exceed
a value u as a function of the statistical random field’s smoothness: an increase in the degree of
smoothness at constant intrinsic volumes results in a decrease of the statistical random field’s resel
volumes (cf. Definition 9). A decrease in resel volumes at constant value u in turn leads to a decrease
in the value of the expected Euler characteristic (cf. eq. (59)). A decrease in the expected Euler
characteristic in turn results in an increase of the probability P(Xm < u) (cf. eq. (68)), which in turn
is equivalent to a decrease of the probability P(Xm ≥ u). In summary, an increase in a statistical
random field’s smoothness thus yields a lower probability for the field’s global maximum to exceed
a given value u. We visualize this dependency in Figure 5C. Note that E(Cu) and P(Xm ≥ u) are
identically equal to E(χ(Eu)).

(P2) The distribution of the number of clusters within an excursion set

The RFP approximation for the distribution of the number of clusters within an excursion set was
introduced by Friston et al. (1994b, eq. 8) and is of the form

Cu ∼ Poiss(λCu), (71)

where
λCu := E(Cu). (72)

That is, the number of clusters is assumed to be distributed according to a Poisson distribution with
parameter E(Cu), which in turn is available from eq. (64). Friston et al. (1994b) base the approximation
for the distribution of the number of clusters in an excursion set on Adler (1981, Theorem 6.9.3, p.
161) and the fact that a Poisson distribution is fully specified in terms of its expectation parameter.
Theorem 6.9.3 in Adler (1981) is concerned with the limit probability of an Euler characteristic number
for high values of u and remarks that “Since this number is (...) essentially the same as the number
of components of the excursion set (...) and the number of local maxima above u, these should have
the same limiting distribution (...). This, however, has never been rigorously proven”. Intuitively, eq.
(71) can be understood as reflecting the fact that the occurrence of clusters in an excursion set under
the null hypothesis should not depend on spatial location, but only depend on an “average spatial
occurrence rate” given by E(Cu). By means of the approximation (64), an increase in the smoothness
of a statistical random field results in a decrease of the expected number of clusters in an excursion
set at a fixed level u. In Figure 5D, we visualize the dependency of P(Cu = c) as a function of the
statistical random field’s smoothness for a fixed level u = 6.5. As evident from the visualization,
increases in smoothness result in a shift of probability mass towards smaller values of c.
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(P3) The distribution of the volume of clusters within an excursion set

As in definition (65), letKu denote a real-valued random variable that models the volume of clusters
within an excursion set measured either in terms of Lebesgue measure or third-order resel volume. In
the SPM implementation of RFP, the probability distribution of this random variable is assumed to
be specified in terms of the probability density function (cf. Friston et al. (1994b, p. 213, eq. (12)))

fKu : R≥0 → R≥0, k 7→ fKu(k) :=
2κ

D
k

2
D
−1 exp

(
−κk

2
D

)
, (73)

where

κ :=

(
Γ

(
D

2
+ 1

)
1

E(Ku)

) 2
D

. (74)

These expressions are motivated as follows. First, eq. (73) has been derived by Friston et al. (1994b)
based on a result by Nosko (1969b,a, 1970). Nosko’s result, which is reported in Adler (1981, p. 158),
states that the size of the distribution of connected components of a GRF’s excursion set to the power
of 2/D has an exponentional distribution with expectation parameter κ. As shown in Supplement S3.3,
eq. (73) then follows directly from Nosko’s result by the change of variables theorem (e.g., Fristedt
and Gray (2013, p. 136)). Note that Adler (1981, p. 158) remarks that “no detailed proofs are given”
for Nosko’s result. Second, eq. (74) follows from the expression for the expected cluster volume eq.
(66) and the fact that an exponential distribution is fully specified in terms of the reciprocal value of
its expectation. It should be noted that the probability density function eq. (73) applies to GRFs and,
in the limit of high degrees of freedom, to T -fields (cf. comments in spm_P_RF.m). Refined results
for the distribution of cluster volumes in excursion sets of T - and F -fields were derived by Cao (1999),
but are not implemented in SPM.

For later reference, we note two formal consequences of the parametric form eq. (73) for the
probability distribution of the cluster volume Ku. First, as shown in Supplement S3.3, eq. (73) implies
that the cumulative density function of the cluster volume is given by

FKu : R→ [0, 1], k 7→ FKu(k) = 1− exp
(
−κk

2
D

)
. (75)

Second, from eq. (75) it follows directly, that the probability of the cluster volume to exceed a constant
k under the RFP framework evaluates to (cf. Friston et al. (1994b, eq. 11))

P(Ku ≥ k) = exp
(
−κk

2
D

)
. (76)

In Figure 5C, we visualize the log probability density function fKu for a fixed value u = 6.5 as a
function of the statistical random field’s smoothness. The allocation of probability density mirrors the
effect of smoothness on the expected volume of clusters within the excursion set E(Ku) in Figure 5B.

(P4) The distribution of the number of clusters of a given volume within an excursion set

Let C≥k,u denote a random variable that models the number of clusters within an excursion set of
level u that have a volume equal to or larger than some constant k. Under the RFP framework, it is
assumed that (cf. Friston et al. (1996, eq. 4))

C≥k,u ∼ Poiss(λC≥k,u), (77)

where
λC≥k,u := E(Cu)P(Ku ≥ k). (78)
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That is, the random variable C≥k,u is assumed to be distributed according to a Poisson distribution,
the expectation parameter of which is given by the product of the expected number of clusters and the
probability of a cluster volume to assume a value equal to or larger than the constant k. Note again
that parametric forms for E(Cu) and P(Ku ≥ k) are available from eqs. (64) and (76), respectively.
Further note that eq. (77) specifies probabilities of the form P(C≥k,u = i), which should be read
as representing the probability that the number of clusters within an excursion set defined by the
level value u with a volume larger than or equal to k is i. For later reference, we note that the sum∑c−1

i=0 P(C≥k,u = i) thus represents the probability that the number of clusters within an excursion set
defined by level u with volume larger than or equal to k is either smaller than or equal to a constant
c ∈ N minus 1, and hence the expression 1 −

∑c−1
i=0 P(C≥k,u = i) represents the probability that the

number of clusters within an excursion set defined by level u having volume equal to or larger than k
is equal to or larger than c.

Expressions (77) and (78) can be motivated as follows. Assume the existence of a random variable
Cu that models the number of clusters within an excursion set at level u and the existence of a
parametric expression for its distribution (provided by eq. (71) and eq. (72) in the theory of RFP).
Assume further that one would like to specify the distribution P(C≥k,u) of a second random variable
C≥k,u that models the number of clusters in an excursion set Eu at level u that have a volume equal to
or larger than some constant k. By definition, this distribution is a marginal distribution of the joint
distribution

P(Cu, C≥k,u) = P(Cu)P(C≥k,u|Cu). (79)

Define the conditional distribution of C≥k,u given Cu by the binomial distribution

C≥k,u|Cu ∼ BNj(µ), with µ := P(Ku ≥ k) (80)

such that by definition

P(C≥k,u = i|Cu = j) =

(
j
i

)
µi(1− µ)j−i, for i ∈ N0

j and j ∈ N. (81)

Intuitively, the event that i of j realized clusters (i.e., i = 0, 1, ..., j) have a volume equal or larger
to k is thus conceived as one realization of j independent Bernoulli events with “success probability”
P(Ku ≥ k). Based on eq. (81), it can then be shown that (cf. Friston et al. (1996, Appendix))

P(C≥k,u = i) =

∞∑
j=1

P(Cu = i, C≥k,u = j) =
λiC≥k,u exp

(
−λC≥k,u

)
i!

, (82)

i.e., that such a random variable C≥k,u has a Poisson distribution with expectation parameter λC≥k,u .
We document the derivation of eq. (82) in Supplement S3.3. The importance of the random variable
C≥k,u in the SPM implementation of RFP will be elaborated on in Section 4.2. Finally, in Figure 5D,
we visualize the distribution of C≥k,u as a function of smoothness and the values of u and k. At
constant smoothness, increasing u and k leads to a shift of probability mass to lower values of c.

(5) The distribution of the maximal cluster volume within an excursion set

Finally, to afford FWER control in multiple testing scenarios relating to the volume of clusters
within excursion sets, a parametric form of the respective maximum statistic is required (cf. Sup-
plement S2). To this end, let, for a set of c ∈ N of clusters within an excursion set Eu at level u,

31



ki, i = 1, ..., c denote the volumes of clusters i = 1, ..., c. Further, let

Km
u := max{k1, ..., kc} (83)

denote the maximal cluster volume within the excursion set. Then, with the definition of the random
variable C≥k,u, we have for k ∈ R

P(Km
u < k) = P(C≥k,u = 0) and P(Km

u ≥ k) = P(C≥k,u ≥ 1). (84)

In words, first, the probability that the maximal cluster volume within an excursion set Eu at level u
is smaller than a constant k is the same as the probability that the number of clusters in the excursion
set Eu which have a volume equal to or larger than k is zero. Second, the probability that the maximal
cluster volume in an excursion set Eu is equal to or larger than a constant k is the same as the
probability that the number of clusters in the excursion set Eu which have a volume equal to or larger
than k is equal to or larger than 1. The distribution of the maximal cluster volume Km

u is thus fully
determined by the distribution of C≥k,u. For later reference, we note that with eqs. (77), (78), and
(82) (cf. (Friston et al., 1994b, eq. 14))

P(Km
u ≥ k) = P(C≥k,u ≥ 1)

= 1−
0∑
i=0

P(C≥k,u = i)

= 1− exp (−E(Cu)P(Ku ≥ k)) .

(85)

4. Application

The general theory of random fields - and the theory of RFP in particular - model three-dimensional
space by R3. In reality, however, fMRI data points are only acquired at a finite number of discrete
spatial locations, commonly known as voxels. This discretization of space has to be accounted for when
considering the application of RFP theory to GLM-based fMRI data analysis. In the current section,
we thus consider the discrete space, discrete data-point linear model

Yiv = miβv + σZiv for i = 1, ..., n and v ∈ V, (86)

where
V := {v|v = (v1, v2, v3) with v1 ∈ Nm1 , v2 ∈ Nm2 , v3 ∈ Nm3} (87)

denotes a voxel index set. Eq. (86) should be read as the discrete-space analogue of eq. (38) for which
the continuous space coordinates x ∈ R3 have been replaced by voxel indices v ∈ V. We assume that
these voxel indices correspond to the weighting parameters of three orthogonal, but not necessarily
orthonormal, basis vectors bd ∈ R3, d = 1, 2, 3 of R3, such that the set

L :=

{
3∑
d=1

vdbd|v1 ∈ Nm1 , v2 ∈ Nm2 , v3 ∈ Nm3

}
(88)

is a finite lattice covering the subset of R3 of interest. Assuming an MNI space bounding box of -78 to
78 mm in the coronal, -112 mm to 76 mm in the sagittal, and -70 mm to 95 mm in the axial direction
and a 2 × 2 × 2 mm voxel size, typical values for the number of indices are m1 = 79, m2 = 95, and
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m3 = 69. With these definitions, we thus have the correspondences

Yiv = Yi(x̃), βv = βi(x̃), and Ziv = Zi(x̃) for x̃ :=
3∑
d=1

vdbd and v ∈ V (89)

between the discrete space and the continuous space linear model representations of eqs. (86) and (38),
respectively.

Building on these correspondences between the theoretical scenario of a continuous space and the
applied scenario of discrete spatial sampling, we are now in a position to discuss the application of the
theoretical framework of the previous section to GLM-based fMRI data analysis. As outlined in the
Introduction, we first consider the parameter estimation of the RFP null model, which comprises the
estimation of the statistical random field’s smoothness and the approximation of the search space’s
intrinsic and resel volumes. We then consider the evaluation of the parametric p-values reported in
the SPM results table.

4.1. Parameter estimation

As discussed in Section 3.2, the probability distributions of all excursion set features of a statistical
random field depend on the resel volumes of the search space via the expected Euler characteristic (cf.
eq. (59)). The resel volumes in turn depend on the FWHM parameterization of the statistical random
field’s smoothness and the search space’s intrinsic volumes (cf. Definition (9)). Application of the
parametric forms for the probability distributions of excursion set features discussed in Section 3.2 in
a data-analytical context thus necessitates the estimation of the statistical random field’s smoothness,
the approximation of its search space’s intrinsic volumes, and the subsequent evaluation of its resel
volumes. In effect, the estimated resel volumes are intended to furnish a data-adaptive null hypothesis
model against which the actually observed data can be evaluated. Because the data typically do not
fully conform to the null hypothesis βv = 0 for all v ∈ V, the SPM implementation of RFP bases its
parameter estimation scheme on the so-called standardized residuals

riv :=
Yiv −miβ̂v√

1
n−p

∑n
i=1

(
Yiv −miβ̂v

)2
, i = 1, ..., n, v ∈ V, (90)

where β̂v denotes the Gauss-Markov estimator for the effect size parameter at voxel v. Practically,
these values are stored in ResI_000*.nii files, which are created and deleted by SPM’s spm_spm.m
function during SPM’s GLM estimation. Note that the denominator of the standardized residuals in
eq. (90) corresponds to the estimate σ̂ of the standard deviation parameter σ. Under the assumption
that miβ̂v veridically reflects the expectation of Yiv, the standardized residuals can thus be conceived
as realizations of the Z-fields Zi(x) at discrete spatial locations (cf. eq. (38) and the introduction
of Section 3). Stated differently, the RFP framework assumes that the standardized residuals can be
considered observations of the null hypothesis model used to evaluate the probabilities of observed
excursion set features. RFP parameter estimation as implemented in SPM’s spm_est_smoothness.m
function then comprises three steps: first, the estimation of the FWHM smoothness parameters based
on the standardized residuals, second, the approximation of the intrinsic volumes of the search space,
and finally, the evaluation of the resel volumes.
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FWHM smoothness parameter estimation

SPM’s estimation scheme for the FWHM smoothness parameters can be conceived as a two-step
procedure. In the first step, an estimate of the smoothness parameter ς (cf. eq. (40)) of the Z-
fields Zi(x) is constructed based on the standardized residuals. In a second step, this estimate is used
together with an estimate of the approximating matrix Λ to afford the estimation of FWHM smoothness
parameters that conform to the equality of eq. (48) and, in their relative magnitude, reflect the diagonal
entries of the variance matrix of partial derivatives (cf. eq. (41)). More specifically, the smoothness
parameter estimate of the first step is evaluated as

ς̂ :=
1

1
m

∑m
v=1 |

n
ñ(n−p)Vv|1/2

, (91)

where Vv ∈ R3×3 denotes a scaled voxel-wise estimate of the variance matrix of gradient components
with elements

(Vv)jk :=

ñ∑
i=1

(ri(v+ej) − riv)(ri(v+ek) − riv) for j, k = 1, 2, 3 and v ∈ V, (92)

m = m1 + m2 + m3 denotes the cardinality of the voxel index set, and ñ ≤ n denotes the size of
a data point subset potentially used by SPM for computational efficiency. The forms of eqs. (91)
and (92) are motivated as follows (Hayasaka and Nichols, 2003; Hayasaka et al., 2004): the (Vv)jk
are products of the first-order finite differences between the standardized residuals of adjacent voxel
indices. These first-order finite differences may be interpreted as scaled versions of numerical first-
order derivatives. Notably, SPM thus foregoes the direct approximation of the gradient components
of the statistical random field. The first order differences in the factors in eq. (92) are evaluated
by spm_sample_vol.c. The formation of the sum of products of these first-order finite differences of
standardized residuals in eq. (92) and its subsequent division by ñ can be interpreted as an estimation
of the (co)variances of the gradient components, if it is assumed that the sample average over available
data points ñ is zero. The subsequent multiplication by n and division by the degrees of freedom n−p
is meant to rescale the respective estimates to the entire set of data points and render the estimate
unbiased by effectively converting standardized to normalized residuals (cf. spm_est_smoothness.m,
comments ll. 144 - 169 and Worsley (1996b)). In effect, the sum terms in the denominator of eq. (91)
can be interpreted as scaled voxel-specific numerical estimates of the square root of the determinants
of V(∇X(x)), x ∈ S. Finally, the summation of these terms and division by the number of voxel
indices m can be interpreted as the numerical integration over the unit cuboid for first-order finite
differences, rather than numerical derivative approximations to the statistical random fields’ gradient
components. In Figure 6 we demonstrate that a numerically simplified version of SPM’s smoothness
parameter estimation approach indeed results in a valid recovery of the smoothness parameter of a
two-dimensional Gaussian random field with Gaussian covariance function.

The reparameterization of smoothness in terms of FWHM smoothness parameters in the second
step then is achieved by setting

f̃xj :=
1

4 ln 2

(
1

m

m∑
v=1

n

ñ(n− p)
(Vv)jj

)− 1
2

(93)
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Figure 6. Smoothness parameter estimation. To exemplify the smoothness estimation scheme of SPM’s RFP imple-
mentation, we capitalize on the fact that for one-dimensional GRFs with Gaussian covariance function, the reciprocal
unit-square Lipschitz-Kiling curvature ς is identical to the Gaussian covariance function’s length parameter ` up to a
factor of 2−1/2 (cf. eq. (43)). A straightforward estimator for ` is thus l̂ :=

√
2ς. For the simulations depicted in the

figure, we evaluated ς using numerical differentiation and sample variances to estimate ` for one-dimensional GRFs on
the interval [0, 1]. We varied ` in the interval [0.04, 0.2] and examined sample sizes in the range from n = 100 to n = 2000.
(A) Panel A visualizes a sample of n = 100 rough GRF realizations with ` = 0.04 . (B) Panel B visualizes a sample of
n = 100 smooth GRF realizations with ` = 0.2. (C) Panel C visualizes the absolute percent relative estimation error
|100 · (ˆ̀− `)/`| for the ensuing estimates. In general, this error is small (. 3 % on average) and decreases for larger
sample sizes uniformly over the space of `. For the full implementational details of these simulations, please see rfp_6.m.

and

f̂xj =
ς̂

1
3

(4 ln 2)−
1
2

f̃xj(∏3
k=1 f̃xj

) 1
3

(94)

for j = 1, 2, 3. Eqs. (93) and (94) implement SPM’s assumption that the variance matrix of gradient
components is of diagonal form and thus that the smoothness parameter ς can be reparameterized in
terms of the FWHM smoothness parameters fxj (cf. eq. (47)). More specifically, these equations are
motivated as follows (cf. spm_est_smoothness.m, comments ll. 246 - 248): the f̃xj can be interpreted
as estimates of the diagonal elements of Λ based on the V(∇X(x)) matrix estimate discussed above. By
normalizing these values using their geometric average in the second factor of eq. (94) and scaling the
resulting normalized f̃xj ’s by the first factor, it is then ensured that the f̂xj ’s reproduce the smoothness
parameter estimate ς̂ if they are substituted as estimates of the fxj ’s in the matrix Λ (cf. eq. (48)).
The thus evaluated estimates are then used for the evaluation of the resel volumes and are reported in
the footnote of the SPM results table as FWHM (voxels).

Intrinsic volume approximation

To approximate the intrinsic volumes of the search space, SPM uses an algorithm proposed by Worsley
et al. (1996, pp. 62 -63) and implemented in spm_resels_vol.c. This algorithm corresponds to a
summation of the contributions of zero- to three-dimensional subspaces along the cardinal axes to the
respective intrinsic volumes of the search space. More specifically, the algorithm evaluates
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• the total number of voxels
m := mx1mx2mx3 , (95)

• the number of edges in the x1, x2 and x3 directions, i.e.,

me
1 := |{(v, v + e1)|v, v + e1 ∈ V}|,

me
2 := |{(v, v + e2)|v, v + e2 ∈ V}|,

me
3 := |{(v, v + e3)|v, v + e3 ∈ V}|,

(96)

respectively,

• the number of faces in the x1-x2-, x1-x3-, and x2-x3- directions, i.e.,

mf
12 := |{(v, v + e1, v + e2, v + e1 + e2)|v, v + e1, v + e2, v + e1 + e2 ∈ V}|,

mf
13 := |{(v, v + e1, v + e3, v + e1 + e3)|v, v + e1, v + e3, v + e1 + e3 ∈ V}|,

mf
23 := |{(v, v + e2, v + e3, v + e2 + e3)|v, v + e2, v + e3, v + e2 + e3 ∈ V}|,

(97)

respectively, and

• the number of cubes, i.e.,

mc := |{(v, v + e1, v + e2, v + e3, v + e1 + e2, v + e2 + e3, v + e1 + e3, v + e1 + e2 + e3)

|v, v + e1, v + e2, v + e3, v + e1 + e2, v + e2 + e3, v + e1 + e3, v + e1 + e2 + e3 ∈ V}|.
(98)

Based on these counts and the physical voxel sizes δ1, δ2 and δ3 in the x1-, x2-, and x3-directions,
respectively, the intrinsic volumes of the search space are then approximated by

µ̃0(S) = m− (me
1 +me

2 +me
3) + (mf

12 +mf
13 +mf

23)−mc,

µ̃1(S) = δ1(me
1 −m

f
12 −m

f
13 +mc) + δ2(me

2 −m
f
12 −m

f
23 +mc) + δ3(me

3 −m
f
13 −m

f
23 +mc),

µ̃2(S) = δ1δ2(mf
12 −mc) + δ1δ3(mf

13 −mc) + δ2δ3(mf
23 −mc),

µ̃3(S) = δ1δ2δ3m
c.

(99)

Note, for example, that µ̃3(S) corresponds to a summation of the volume δ1δ2δ3 of each of the mc

voxels constituting the search space. For a whole-brain GLM-based fMRI data analysis, this quantity
thus typically corresponds to an approximation of the physical brain volume by many small cuboids.

Resel volume estimation

De-facto, SPM does not evaluate an approximation of the search space’s intrinsic volumes perse.
Instead, it capitalizes on the subspace decomposition assumption of eq. (36) and directly estimates
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the resel volumes in spm_resel_vol.m by

R̂0(S) = µ̃0(S),

R̂1(S) =
(
δ1
f̂x1

δ2
f̂x2

δ3
f̂x3

)me
1 −m

f
12 −m

f
13 +mc

me
2 −m

f
12 −m

f
23 +mc

me
3 −m

f
13 −m

f
23 +mc

 ,

R̂2(S) =
(

δ1δ2
f̂x1 f̂x2

δ1δ3
f̂x1 f̂x3

δ2δ3
f̂x2 f̂x3

)m
f
12 −mc

mf
13 −mc

mf
23 −mc

 , and

R̂3(S) =
1

f̂x1 f̂x2 f̂x3

µ̃3(S).

(100)

The estimated resel volumes R̂d(S), d = 0, 1, 2, 3 are the pivot points between the practical perspec-
tive of the current section and the theoretical perspective of Section 3: Theory. As previously noted,
virtually all probability distributions of the topological features of interest in RFP depend on the resel
volumes via the expected Euler characteristic (cf. eq. (59)). Substitution of R̂d(S), d = 0, 1, 2, 3 for
the resel volumes in the expected Euler characteristic formula thus results in a set of probability distri-
butions that reflect a data-adapted statistical random field null model. The exceedance probabilities
of the observed topological features of interest under this data-adapted null model are then reported
in the SPM results table.

This concludes our discussion of the RFP parameter estimation scheme implemented in SPM. We
provide a reproduction of this estimation scheme in a simplified and annotated version of spm_est_
smoothness.m as rfp_spm_est_smoothness.m in the accompanying OSF project.

4.2. The SPM results table

The majority of p-values in the SPM results table relate to the random variable C≥k,u introduced in
Section 3.2 (Friston et al., 1996). Recall that C≥k,u models the number of clusters within a level u-
dependent excursion set Eu that have a volume equal to or larger than a constant k ∈ R. As discussed
in Section 3.2, the random variable C≥k,u takes on values in N0 and is distributed according to a
Poisson distribution with parameter λC≥k,u := E(Cu)P(Ku ≥ k), where E(Cu) represents the expected
number of clusters within an excursion set Eu and is given by eq. (64), while P(Ku ≥ k) denotes the
probability for a cluster within an excursion set Eu to assume a volume equal to or larger than the
constant k and is given by eq. (76). Formally, we have

C≥k,u ∼ Poiss(λC≥k,u), (101)

and thus

P(C≥k,u = c) = exp (−E(Cu)P(Ku ≥ k))
(E(Cu)P(Ku ≥ k))c

c!
for c = 0, 1, .... (102)

For ease of notation, we denote the distribution function of C≥k,u in the current section by

FλC≥k,u : N0 → [0, 1], c 7→ FλC≥k,u (c) :=
c∑
j=0

P(C≥k,u = j) (103)
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(cf. Supplement S1). The majority of p-values in the SPM results table are then special cases of
probabilities related to C≥k,u for the values c ∈ N0, k ∈ R, and u ∈ R and are evaluated using the
implementation of the Poisson distribution function (103) in spm_Pcdf.m. To distinguish these special
cases, we make the following assumptions and use the following notation. We assume that

(1) a statistical parametric map, for example a three-dimensional voxel map comprising T value real-
izations, has been obtained,

(2) for this map, a cluster-forming threshold value ũ and a cluster-extent threshold value k̃ in resel
volume have been defined,

(3) the number of clusters c̃ in the resulting excursion set Eũ has been evaluated,

(4) the volumes of these clusters k̃i, i = 1, ..., c̃ have been assessed, and

(5) for each cluster, the maximum test statistic within this cluster has been evaluated and is denoted
by t̃i, i = 1, ..., c̃.

A few remarks from a practical perspective on these assumptions are in order. In SPM, statistical
parametric maps for T tests are evaluated based on GLM beta and variance parameter estimates for
user-defined contrast weight vectors and are saved under the filename spmT_000*.nii or the like. When
interacting with SPM’s Results graphical user interface, or specifying options in SPM’s batch editor
for the Results Report module, the user is prompted to specify the cluster-forming threshold value ũ by
selecting a Threshold Type with options “None” and “FWE” for p-value adjustment, and a Threshold
Value in the form of a p-value. The combination of these two options is evaluated by SPM to define the
value ũ as follows. In the case of “p-value adjustment: none” and the subsequent specification of a p-
value (e.g. 0.001), SPM uses the function spm_u.m to evaluate the inverse cumulative density function
for the probabilistic complement of the specified value and the respective statistic. For example, in the
case of a statistical parametric map comprising T -values, ũ thus corresponds to the “critical T -value”,
i.e., the value tc for which values of the T -statistic equal to or larger than tc have a probability of
equal to or smaller than the specified p-value under the standard T - distribution with the appropriate
degrees of freedom (e.g. for a T distribution with 30 degrees of freedom and p-values of 0.05, 0.025,
and 0.001, the respective ũ values evaluate to 1.697,2.042, and 3.385, respectively). In the case of
“p-value adjustment: FWE” and the subsequent specification of a p-value (e.g. 0.05), SPM uses the
function spm_uc.m to evaluate a critical threshold using the RFP framework. This option leads, in
general, to higher values for ũ. The cluster-extent threshold k̃ is specified by the user in units of voxels
and is transformed into units of resels by SPM by multiplying the user-specified value by 1/

∏3
d=1 f̂xd .

Finally, the excursion set Eũ, the number of clusters c̃, and the cluster-specific volume and maxima
statistics k̃i and t̃i, i = 1, ..., c̃ are evaluated using low-level SPM functionality, such as spm_bwlabel.c,
spm_clusters.m, and spm_max.m. For the computational details of these routines, the reader is
referred directly to the documentation in the functions’ headers. Based on an interaction between the
spm_list.m and spm_P_RF.m functions, SPM then documents p-values in the SPM results table for
set-level, cluster-level and peak-level inferences (Friston et al., 1996). In the following, we specify for
each level of inference which probabilities these p-values correspond to.

Set-level inference

Assume we are interested in the probability

P(C≥k̃,ũ ≥ c̃), (104)
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i.e., the probability that for the specified cluster-forming threshold ũ, the number of clusters within
the excursion set Eũ that have a volume equal to or larger than the specified cluster-extent threshold
value k̃ is equal to or larger than the observed number of clusters c̃. Clearly, we have

P(C≥k̃,ũ ≥ c̃) = 1− P(C≥k̃,ũ < c̃)

= 1− FλC≥k̃,ũ (c̃)
(105)

and eq. (104) can thus be evaluated using the Poisson distribution function (103). In the SPM results
table, the probability P(C≥k̃,ũ ≥ c̃) is reported as the “set-level p value” and the value c̃ is documented
as the number of clusters c (Figure 1 and Table 3). The idea behind using (104) is to enable inferences
about “network-activations” (Friston et al., 1996, pp. 229-230): if the number of actually observed
clusters c̃ exceeds the number E(Cu) of clusters expected under the RFP null hypothesis model by
a large margin, eq. (104) evaluates to a small value. In this case, it may thus be concluded that
the observed pattern of distributed clusters reflects the engagement of a distributed network of brain
regions in the GLM contrast of interest. Note that the set-level inference probability (104) is the only
p-value of the SPM results table that directly depends on the user specified cluster-extent threshold k̃.

Cluster-level inference

Assume that for a cluster of the excursion set Eũ indexed by i, where i = 1, ..., c̃, we are interested in
the probability

P(C≥k̃i,ũ ≥ 1), (106)

i.e., the probability that for the specified cluster-forming threshold ũ the number of clusters within the
excursion set that have a volume equal to or larger than the observed cluster volume k̃i is equal to or
larger than 1. For this probability, we have

P(C≥k̃i,ũ ≥ 1) = 1− P(C≥k̃i,ũ < 1)

= 1− FλC≥k̃i,ũ
(0)

= 1− P(C≥k̃i,ũ = 0)

= 1− exp
(
−E(Cũ)P(Kũ ≥ k̃i)

)
= P

(
Km
ũ ≥ k̃i

)
.

(107)

From the second equality of eq. (107), we thus see that (106) can be evaluated using the Poisson
distribution function (103). Moreover, from the last equality, we see that P(C≥k̃i,ũ ≥ 1) corresponds
to the probability for the maximal cluster volume within an excursion set Eũ to exceed the value k̃i
(cf. eq. (85)). Because the probability (106) hence relates to the maximum statistic for cluster extent,
declaring a cluster activation significant, if P(C≥k̃i,ũ ≥ 1) < α furnishes a statistical hypothesis test
for spatial cluster extent that controls the FWER at level α ∈ [0, 1] (cf. Supplement S2). Note that
the family of statistical tests for which the Type I error rate is controlled here refers to the volumes of
clusters Kũ within an excursion set. In the SPM results table, the probability P(C≥k̃i,ũ ≥ 1) is reported
as the “FWE-corrected p-value at the cluster level” for each cluster i = 1, ..., c̃ in the column labelled
pFWE-corr and the voxel number equivalent k̃i

∏3
d=1 f̂xd of the resel volume of each cluster i = 1, ..., c̃

is reported in the column labelled kE (Figure 1 and Table 3).
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As “uncorrected p-value at the cluster level” for cluster i = 1, ..., c̃ SPM reports the probability

P(Kũ ≥ k̃i), (108)

which corresponds to the probability that the cluster volume in an excursion set Eũ exceeds the
observed volume of the ith cluster. Note that rejecting the null hypothesis based on P(Kũ ≥ k̃i) < α
for a significance level α ∈ [0, 1] over a family of c̃ clusters entails a probability of 1 − (1 − α)c̃ for at
least one Type I error and hence offers no FWER control. The “p-value correction” procedure implied
by the SPM results table header labelling can thus be interpreted as the transformation of (108) by
means of the right-hand side of the penultimate equation in eq. (107).

Peak-level inference

Assume we are interested in the probability

P(C≥0,t̃i
≥ 1), (109)

i.e., the probability that for a hypothetical cluster-forming threshold corresponding to the maximum
statistic t̃i of cluster i, there are one or more clusters within the excursion set that have a volume equal
to or larger than 0. We have

P(C≥0,t̃i
≥ 1) = 1− P(C≥0,t̃i

< 1)

= 1− FλC≥0,t̃i

(0)

= 1− P(C≥0,t̃i
= 0)

= 1− exp
(
−E(Ct̃i)P(Kt̃i

≥ 0)
)

= 1− exp
(
−E(Ct̃i)

)
≈ P(Xm ≥ t̃i).

(110)

In eq. (110), the penultimate equality follows with expression (76) for k = 0. As shown in Supplement
S3, the ultimate approximation in eq. (110) follows using an approximation of the exponential function
by the first two terms in its series definition (Friston et al., 1996, eq. 5). Thus, P(C≥0,t̃i

≥ 1)
approximates the probability that the global maximum of the statistical field of interest is equal or
larger to the observed cluster maximum statistic value t̃i. In the SPM table, P(C≥0,t̃i

≥ 1) is reported
as the “FWE-corrected p-value at the peak level” for cluster i = 1, ..., c̃ (Figure 1 and Table 3). Because
this probability hence relates to the maximum statistic for the test statistics comprising the statistical
parametric map, declaring a voxel test statistic significant, if P(Xm ≥ t̃i) < α furnishes a statistical
hypothesis test for voxel test statistics that controls the FWER at level α ∈ [0, 1] (cf. Supplement S2).
Note that the family of statistical tests for which the Type I error rate is controlled here refers to the
values of voxel-wise test statistics.

Finally, the SPM results table also reports an “uncorrected p-value at the peak level”. This p-value
is the probability P(C≥0,t̃i

≥ 1) under the assumption that the resel volumes of the search space are
given by R0 = 1 and Rd = 0 for d = 1, 2, 3. Hence, in light of eqs. (68) (64), and (110), this p-value is
evaluated as

E(χ(Et̃i)) = ρ0(t̃i). (111)

Intuitively, this corresponds to the scenario of a statistical random field comprising only point volumes
at the locations of voxels with no spatial dependencies. Because the zero-order Euler characteristic
densities are equivalent to the cumulative density functions of the Z-,T -, and F -distributions, the
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set-level cluster-level peak-level

p c pFWE-corr kE puncorr pFWE-corr T puncorr

P(C≥k̃,ũ ≥ c̃) c̃ P(C≥k̃i,ũ
≥ 1) k̃if̂ P(Kũ ≥ k̃i) P(C≥0,t̃i

≥ 1) t̃i ρ0(t̃i)

Height threshold ũ,
∑D
d=0 ρd(ũ), P(C≥0,ũ ≥ 1) Degrees of freedom 1, n− p

Extent threshold k̃f̂ , P(Kũ ≥ k̃), P(C≥k̃,ũ ≥ 1) FWHM δdf̂xd , f̂xd d = 1, 2, 3

<k> E (Kũ) f̂ Volume λ(S),m,R3(S)

<c> E (Cũ) P(Kũ ≥ k̃) Voxel size δ1, δ2, δ3, f̂

FWEp uc|P(C≥0,uc
≥ 1) = 0.05

FWEc min{k̃i|P(C≥k̃i,ũ
≥ 1) < 0.05}

Table 3. p-values and other statistics reported in the SPM results table (cf. Figure 1). Clusters are indexed by
i = 1, ..., c̃. We use the definitions f̂ :=

∏3
d=1 f̂xd and δ := δ1δ2δ3.

uncorrected p-value at the peak level corresponds to the familiar p-value of single statistical testing
scenarios. From this perspective, the “p-value correction” at the peak-level implied by the SPM results
table header hence corresponds to an adjustment of eq. (111) in terms of the search space’s intrinsic
volumes (i.e., the multiple testing multiplicity) and the underlying statistical random field’s smoothness
(i.e., the correlative nature of the multiple tests).

The SPM results table footnote

The footnote of the SPM results table documents a number of statistics that contextualize the reported
p-values: the ‘Height threshold’ and ‘Extent threshold’ entries indicate the user-defined cluster-forming
threshold ũ and the voxel number equivalent of the cluster-extent threshold, i.e., k̃

∏3
d=1 f̂xd , respec-

tively. In addition to these values, the height threshold entry lists the uncorrected and corrected
peak-level p-value equivalents of ũ, and the extent threshold entry lists the uncorrected and corrected
cluster-level p-values of k̃. The ‘Expected voxels per cluster <c>’ and ‘Expected number of clusters
<c>’ entries report the voxel equivalent of the expected cluster volume, and the expected number of
clusters with volume equal to or larger than the user-specified cluster-extent threshold k̃, respectively.
The ‘FWEp’ and ’FWEc’ entries correspond to the critical ũ value for a corrected peak-level p-value
equal to or less than 0.05 and the smallest observed cluster size with a cluster-level corrected p-value
less than 0.05, respectively. The ‘Degrees of freedom’ entry reports the degrees of freedom of the
underlying GLM design in an F -test format, such that for a one-sample T -test, the first number is set
to 1, and the second number corresponds to the degrees of freedom of the T -test, n− p. The ‘FWHM’
entry reports the estimated FWHM parameters in units of mm, i.e., δdf̂xd , d = 1, 2, 3 and in units of
resels, i.e., f̂xd , d = 1, 2, 3. The ‘Volume’ entry indicates the search space volume in terms of Lebesgue
measure λ(S) = mδ in units of mm3, where δ := δ1δ2δ3 is the Lebesgue volume of a single voxel in
mm3, in terms of the number of voxels m, and in terms of the third-order resel volume R3(S). Finally,
the ‘Voxel size‘ entry reports the voxels sizes δ1, δ2, δ3 in units of mm and the volume of a “cuboid
resel” f̂ :=

∏3
d=1 f̂xd in voxels.

This concludes our documentation of the SPM results table. For an overview, please see Table 3. We
provide a reproduction of SPM’s p-value tabulation functionality in simplified and annotated versions
of spm_list.m and spm_P_RF.m as rfp_spm_results_table.m in the accompanying OSF project.

5. Discussion

RFP is a highly sophisticated and computationally efficient mathematical framework and has repeat-
edly been validated empirically (e.g., Hayasaka and Nichols, 2003; Flandin and Friston, 2017). In the
field of statistics, RFP probably constitutes the most original and most advanced contribution of the
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neuroimaging community (Adler et al., 2015), while in the neuroimaging field itself, RFP likely consti-
tutes the most routinely used statistical inference strategy (Nichols et al., 2016). Nonetheless, in the
following, we will point to a few mathematical and statistical issues that may be elaborated on in the
further refinement of RFP.

First, from a mathematical perspective, it may be desirable to establish formal justifications for
the distribution of the number of clusters within an excursion set and the distribution of the volume of
clusters within an excursion set. As noted by Adler (1981) and discussed in Section 3.2, the currently
used parametric forms appear to lack formal proofs. Similarly, it may be a worthwhile endeavour
to mathematically model the conditional probabilistic structure of the number of clusters and their
associated volumes more explicitly. At present, it is assumed that the expected number of clusters and
the expected volume of a cluster are independent (cf. eq. (66)). This appears to be a rather strong
assumption, given the finite size of the search space. Finally, following Taylor and Worsley (2007), it
would be desirable to formally delineate some additional qualitative properties of the FWHM estimators
implemented in SPM. The currently available reference in this regard, Worsley (1996b), appears to be
somewhat outdated and superseded by the de-facto estimation of the FWHMs based on standardized,
rather than normalized, residuals. Please note that given the approximative nature of the entire RFP
framework and its repeated empirical validation, we do not mean to imply by these suggestions that
RFP as it stands is fundamentally flawed, but that these foundations could be elaborated on to further
ground the approach mathematically.

Second, from a statistical perspective, a promising avenue for future research on RFP could be
an update from the estimation of resel volumes to Lipschitz-Killing regression (Adler, 2017). In brief,
Lipschitz-Killing regression foregoes an explicit approximation of the data’s smoothness and intrinsic
volumes and instead fits observed empirical Euler characteristics to the Gaussian kinematic formula
(Taylor et al., 2006) via generalized least squares. As such it potentially offers better analytical
tractability, facilitated diagnostic, and higher computational efficiency in higher dimensions, for exam-
ple in the full spatiotemporal modelling of combined M/EEG and fMRI data.

Notwithstanding these potential future refinements, we hope that with our current documentation
of RFP, we can contribute to the continuing efforts towards ever higher degrees of computational
reproducibility and transparency in computational cognitive neuroscience (Nichols et al., 2017; Poldrack
et al., 2017; Millman et al., 2018; Toelch and Ostwald, 2018). Moreover, we hope that we can contribute
to a factually grounded and technically precise discussion about the mathematical and computational
aspects of fMRI data analysis.
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Supplementary Material

Supplement S1. Probabilistic foundations

In this Appendix, we review a few core concepts from mathematical probability theory. The treatment
is necessarily shallow and only serves as a means of establishing and clarifying notation that occurs
at other places herein. Excellent treatments of modern probability theory are provided for example
by Billingsley (1978); Fristedt and Gray (2013); Rosenthal (2006) and in concise and applied form by
Shao (2003).

Probability spaces

A probability space is a triple (Ω,A,P), where

• Ω is a set of elementary outcomes ω,

• A is a σ-algebra, i.e., A is a set with the following properties

◦ Ω ∈ A,
◦ A is closed under the formation of complements, i.e., if A ∈ A, then also Ac ∈ Ω for all
A ∈ A,
◦ A is closed under countable unions, i.e., if A1, A2, A3, ... ∈ A, then ∪∞i=1Ai ∈ A.

• P is a probability measure, i.e., P is a mapping from P : A → [0, 1] with the following properties:

◦ P is normalized, i.e., P(∅) = 0 and P(Ω) = 1, and

◦ P is σ-additive, i.e., if A1, A2, ... is a pairwise disjoint sequence in A (i.e., Ai ∈ A for
i = 1, 2, ... and Ai ∩Aj = ∅ for i 6= j), then P(∪∞i=1Ai) =

∑∞
i=1 P(Ai).

Probability spaces are very general and abstract models of random experiments. A basic example of
a probability space is a probability space that models the throw of a die. In this case the elementary
outcomes ω ∈ Ω model the six faces of the die, i.e., one may set Ω := {1, 2, 3, 4, 5, 6}. If the die is thrown,
it will roll, and once it comes to rest, its upper surface will show one of the elementary outcomes. The
typical σ-algebra used in the case of discrete and finite outcomes sets such as the current Ω is the
power set P(Ω) of Ω, i.e., the set of all subsets of Ω. It is a basic exercise in mathematical probability
theory to show that the power set indeed fulfils the properties of a σ-algebra as defined above. Because
P(Ω) contains all subsets of Ω, it also contains the elementary outcome sets {1}, {2}, ..., {6}, which
thus get allocated a probability P({ω}) ∈ [0, 1], ω ∈ Ω by the probability measure P. Probabilities of
sets containing a single elementary outcome are also often written simply as P(ω) (:= P({ω})). The
typical value ascribed to P(ω), ω ∈ Ω, if used to model a fair die, is P(ω) = 1/6. The σ-algebra
P(Ω) contains many more sets than the sets of elementary outcomes. The purpose of these elements
of the σ-algebra is to model all sorts of events to which an observer of the random experiment may
want to ascribe probabilities. For example, the observer may ask: “What is the probability that the
upper surface shows a number larger than three?”. This event corresponds to the set {4, 5, 6}, which,
because the σ-algebra P(Ω) contains all possible subsets of Ω, is contained in P(Ω). Likewise, the
observer may ask: “What is the probability that the upper surface shows an even number?”, which
corresponds to the subset {2, 4, 6} of Ω. The probability measure P is defined in such a manner that
the answers to the following questions are predetermined: “What is the probability that the upper
surface shows nothing?” and: “What is the probability that the upper surface shows any number in
Ω?”. The element of P(Ω) that corresponds to the first question is the empty set, and by definition of
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P, P(∅) = 0. This models the idea that one of the elementary outcomes, i.e., one surface with pips,
will show up on every instance of the random experiment. If this is not the case, for example because
the pips have worn off at one of the surfaces, the probability space model as sketched so far is not
a good model of the die experiment. The element of P(Ω) that corresponds to the second question
is Ω itself. Here, the definition of the probability measure assigns P(Ω) = 1, i.e., the probability
that something (unspecified) will happen, is one. Again, if the die falls off the table and cannot be
recovered from under the couch, the probability space model and the experiment are not in good
alignment. Finally, the definition of the probability space as provided above allows one to evaluate
probabilities for certain events based on the probabilities of other events by means of the σ-additivity of
P. Assume, for example, that the probability space models the throw of a fair die, such that it is defined
that P({ω}) = 1/6. Based on this, the σ-additivity property allows one to evaluate the probabilities of
many other events. Consider for example an observer who is interested in the probability of the event
that the surface of the die shows a number smaller or equal to three. Because the elementary events
{1}, {2}, {3} are pairwise disjoint, and because the event of interest can be written as the countable
union {1, 2, 3} = {1} ∪ {2} ∪ {3} of these events, one may evaluate the probability of the event of
interest by P(∪3

i=1{i}) =
∑3

i=1 P(i) = 1/6 + 1/6 + 1/6 = 1/2.
The discussion above was concerned with the case that a probability space is used to model a random

experiment with a finite number of elementary outcomes. In the modelling of scientific experiments, the
elementary outcomes are often conceived as real numbers of real vectors (note that this can actually be
thought of as a remnant from the pre-digital age. Digital representations of “continuous” measures such
as voltage are in fact discrete and finite, such that at least in principle, one could use probability spaces
with finite elementary outcome spaces also in a modern scientific context). Much of the theoretical
development of modern probability theory in the late nineteenth and early twentieth century was
concerned with the question of how ideas from basic probability with finite elementary outcome spaces
can be generalized to the continuous outcome space case. In fact, it is perhaps the most important
contribution of the probability space model defined above and originally developed by Kolmogorov
(1956) to be applicable in both the finite-discrete, and the continuous-infinite elementary outcome set
scenarios. The construction and study of probability spaces and their properties when Ω := R or
Ω := Rn, n > 1 is a central topic in modern probability theory and largely eschewed here. Without
delving into the mathematical subtleties, we do however note two aspects of the continuous outcome
space scenario. First, the σ-algebras employed when Ω := Rn, n ≥ 1 are the so-called Borel σ-algebras,
commonly denoted by B for n = 1 and Bn for n > 1. The construction of these σ-algebras is beyond
our scope, but for the applied modelling that we have in mind, it is not unhelpful to think of Borel
σ-algebras as power sets of R or Rn, n > 1. This is factually wrong because it can be shown that
there are in fact more subsets of R or Rn, n > 1 than there are elements in the corresponding Borel
σ-algebras. Nevertheless, many events of interest in applied scenarios, such as the probability for the
elementary outcome of a random experiment with outcome space R to fall into a real interval [a, b],
are in B. Second, the probability assigned to a single element of a real-valued or real-vector valued
outcome space is zero.

Random variables and distributions

From a mathematical perspective, random variables are neither “random” nor “variables”. Instead,
random variables are (deterministic) functions that map elements of the outcome space Ω into another
space Γ. Typically, Γ is the real line R, in which case one speaks of a real-valued random variable; or
Γ corresponds to Rn, n > 1, in which case one speaks of a vector-valued random variable, or random
vector.

Not all functions from Ω to another space Γ are random variables. A fundamental feature of random
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variables is that they are measurable. In the mathematical literature, the terms measurable mapping
and random variable are hence also used interchangeably. To make the concept of a measurable
mapping precise, let (Ω,A,P) denote a probability space, and let

X : Ω→ Γ (S1.1)

denote a function. Assume further that there exists a σ-algebra S on Γ (e.g., in the case of a real-valued
random variable, S = B). The tuple of a set Γ and a σ-algebra S on this set is generally referred to
as a measurable space (for every probability space (Ω,A,P), (Ω,A) thus forms a measurable space).
Finally, for every set S ∈ S let X−1(S) denote the preimage of S under X, i.e., the set of all ω ∈ Ω,
which are mapped onto elements of S by X. Formally, the preimage of a set S ∈ S under X can be
written as

X−1(S) := {ω ∈ Ω|X(ω) ∈ S}. (S1.2)

Now, a mapping X is called a measurable mapping or random variable (or, depending on Γ, a random
vector), if the preimages of all S ∈ S are elements of the σ-algebra A on Ω. Formally, X is called a
measurable mapping, if

X−1(S) ∈ A for all S ∈ S. (S1.3)

The condition of measurability of the random variable X has a fundamental consequence for the sets
in S: because the probability measure P allocates a probability P(A) to all sets in A, and because, by
definition of the measurability ofX, all preimagesX−1(S) of all sets in S are sets in A, the construction
of a random variable on Ω allows for allocating a probability also to all sets S ∈ S, namely the
probability of the preimage X−1(S) ∈ A under P. This entails the induction of a probability measure
on S, which is called the distribution of the random variableX on (Γ,S), and denoted by PX . Formally,
this probability measure is hence defined by

PX : S → [0, 1], S 7→ PX(S) := P
(
X−1(S)

)
= P ({ω ∈ Ω|X(ω) ∈ S}) . (S1.4)

Consequently, together with PX , the measurable space (Γ,S) forms a probability space (Γ,S,PX).
In applied probability theory, it is the latter probability space (Γ,S,PX), that is usually of primary

interest. For example, consider the case of a probability space (Ω,A,P) and a random variable X : Ω→
R. As discussed above, this real-valued random variable induces a second probability space (R,B,PX)
formed by the real line with the Borel σ-algebra B and the distribution PX of X. When reference is
made to the distribution of a continuous-valued random variable in an applied context, it is usually
this probability space that forms the mathematical background model.

Notation for distributions

With the concept of random variables and their distributions come a number of notational conventions.
We first note that random variables are often also denoted as

X : (Ω,A)→ (Γ,S) or X : (Ω,A,P)→ (Γ,S). (S1.5)

Both notations are not inherently meaningful, as the random variable X only maps elements of Ω
onto elements of Γ. Presumably, the notations of eq. (S1.5) evolved to stress the fact that with the
concept of a random variable defined on the outcome set of a probability space comes the theoretical
overhead of probability distributions that relate to S,A and P as described above. Second, the following
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conventions exist for events A ∈ A expressed with regards to the behaviour of X on S:

{X ∈ S} := {ω ∈ Ω|X(ω) ∈ S} , S ⊂ Γ (S1.6)
{X = a} := {ω ∈ Ω|X(ω) = a} , a ∈ Γ (S1.7)
{X > a} := {ω ∈ Ω|X(ω) > a} , a ∈ Γ (S1.8)
{X ≥ a} := {ω ∈ Ω|X(ω) ≥ a} , a ∈ Γ (S1.9)
{X < a} := {ω ∈ Ω|X(ω) < a} , a ∈ Γ (S1.10)
{X ≤ a} := {ω ∈ Ω|X(ω) ≤ a} , a ∈ Γ. (S1.11)

These conventions entail the following convention for expressing probabilistic behaviour of random
variables, here exemplarily demonstrated for two events in the list above

PX(X ∈ S) = P({X ∈ S}) = P({ω ∈ Ω|X(ω) ∈ S}) (S1.12)
PX(X ≥ s) = P({X ≥ s}) = P({ω ∈ Ω|X(ω) ≥ s}). (S1.13)

Because of the redundancy in the reference to X in symbols of the form PX(X ≥ s), the subscript
is often omitted, i.e., the expression is written as P(X ≥ s). This notation directly links to applied
contexts, in which the distribution of the random variable X is defined directly on the induced prob-
ability space (Γ,S,PX), rather than by means of the underlying probability measure P. For example,
for a real-valued random variable X on a probability space (Ω,A,P) that induces the probability space
(R,B,PX), one may reference the distribution of X simply by p(x).

Distribution functions

The distribution of a real-valued random variable X : Ω → R is fully specified by means of its
distribution function FX , defined by

FX : R→ [0, 1], x 7→ FX(x) := PX(X ≤ x). (S1.14)

Note that for a real-valued random variable, the set in R for which X assumes values smaller or equal
to x ∈ R is given by the interval ] − ∞, x]. Intuitively, FX(x) represents the probability that the
random variable X takes on a value equal or smaller than x. It thus follows, that 1−FX(x) represents
the probability that the random variable X takes on a value larger than x. If the distribution of the
random variable can be specified in terms of a probability density function fX : R → R≥0, then the
distribution function of X can be evaluated as

FX(x) = PX(X ≤ x) =

∫ x

−∞
f(ξ) dξ (S1.15)

where the integral denotes the Riemann integral. In this case, the distribution function is often referred
to as cumulative density function. Note that in this case we have

PX(X ≤ x) = PX(X < x). (S1.16)

Finally, note that the function

F̄X : R→ [0, 1], x 7→ F̄X(x) := PX(X > x) = 1− PX(X ≤ x) (S1.17)

is known as the complementary distribution function of the random variable X.
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Expected value, variance, and covariance

Expected value

The expected value E(X) of a random variable X is the value that the random variable takes on “on
average” over many repetitions of a random experiment. Intuitively, let (Ω,A,P) denote a probability
space, and let X : Ω → R denote a real-valued random variable. Then one can imagine that on each
repetition of a random experiment, an elementary outcome ω is drawn from Ω according to the measure
assigned to it by P(ω). The thus realized ω is passed through the functionX and a realizationX(ω) ∈ R
of the random variable X is obtained. The average of infinitely many such obtained realizations is a
real value that corresponds to the intuition of the expected value of X.

Formally, the expected value of a random variable X on a probability space (Ω,A,P) is given by
the Lebesgue integral

E(X) :=

∫
X dP =

∫
Ω
X(ω) dP(ω). (S1.18)

The first integral in eq. (S1.18) is a short-form notation for the Lebesgue integral, while the second
integral in eq. (S1.18) is probably more suggestive. Informally, it can be read as stating that the ex-
pected value of the random variableX is given by multiplying the valuesX(ω) with their corresponding
probabilities P(ω) and integrating (summing) these products over all values ω in the outcome space Ω.
For our purposes, the most important aspect of eq. (S1.18) is that it can be considered a generalization
of the two familiar forms of expected values from applied probability theory: the expected value of a
random variable on a discrete and finite outcome space of cardinality n, i.e.,

E(X) =
n∑
i=1

X(ωi)P(ωi) (S1.19)

and the expected value of a random variable the distribution of which is specified in terms of a
probability density function f(x), i.e.,

E(X) =

∫ ∞
−∞

xf(x) dx, (S1.20)

where the integral denotes the Riemann integral. Showing that eqs. (S1.19) and (S1.20) indeed follow
from the general definition (S1.18) is, however, not trivial and omitted here. Because the expected
value is defined in terms of integrals or sums, the linearity properties of integrals also apply to expected
values. More formally, for real-valued random variables X and Y and a, b ∈ R, we have

E(aX + bY ) = aE(X) + bE(Y ). (S1.21)

Variance

The variance of a random variable X is a measure of its variability about its expected value. It is
defined in terms of the expected value of its squared deviation about its expected value:

V(X) := E
(
(X − E(X))2

)
. (S1.22)

Intuitively, eq. (S1.22) implies the following approach to compute the variance of a random variable:
first, evaluate the expectation E(X) of the random variable. Then, obtain infinitely many elementary
outcomes ω from the outcome space Ω of the random variable, and for each outcome, evaluate the
squared difference between the value X(ω) and the value E(X). Finally, average these squared differ-
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ences over all infinitely many repetitions of the random experiment. Of course, this procedure is not
very different from the evaluation of an experimental variance or standard deviation, and should be
understood as an idealized, theoretical version thereof.

Covariance

The covariance of two real-valued random variables X and Y is a measure of their joint variation, i.e.,
a measure of “how often on average” the two random variables take on either both high or low values
(positive covariance), or one of them a high and one of them a low value (negative covariance). Very
informally, the covariance is thus an unnormalized version of the correlation of two random variables.
The covariance of two random variables, denoted by C(X,Y ), is defined in terms of an expected value:

C(X,Y ) := E ((X − E(X))(Y − E(Y ))) . (S1.23)

Intuitively, eq. (S1.23) implies an approach to compute the covariance of the random variables X
and Y : for each random variable, first evaluate their respective expected values E(X) and E(Y ).
Then obtain many realizations of the random variables by sampling elementary outcomes from their
underlying outcome space, subtract the respective expectations from each pair of realizations, multiply
the thus obtained values, and average these products over infinitely many repeats of this procedure.
Of course, this procedure is not very different from computing the covariance of a finite number of
experimental observations in an applied context. In the following, we discuss two elementary properties
of covariances.

First, with the linearity property of expected values, eq. (S1.23) can be rewritten as follows, which
is often helpful:

C(X,Y ) = E ((X − E(X))(Y − E(Y )))

= E (XY −XE(Y )− E(X)Y + E(X)E(Y ))

= E(XY )− E(X)E(Y )− E(X)E(Y ) + E(X)E(Y )

= E(XY )− E(X)E(Y ).

(S1.24)

For example, if E(X) = E(Y ) = 0, then the covariance of the random variables X and Y is given
simply by the expected value of their product. Moreover, from eq. (S1.24), one can directly infer that
the expected value of the product of two random variables depends on their covariance

E(XY ) = E(X)E(Y ) + C(X,Y ). (S1.25)

Only for the case that C(X,Y ) = 0 does the expected value of a product of random variables thus eval-
uate to the product of the expected values of the respective random variables. Second, the covariance
of a random variable X with itself corresponds to its variance:

C(X,X) = E(X2)− E(X)2

= E(X2)− 2E(X)2 + E(X)2

= E
(
X2 − 2XE(X) + E(X)2

)
= E

(
(X − E(X))2

)
= V(X).

(S1.26)
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Probability distributions of relevance for the theory of RFP

In the following, we review four probability distributions that are of central relevance for the SPM
implementation of RFP.

The Bernoulli distribution

A random variable X taking on values in {0, 1} is said to have a Bernoulli distribution with parameter
µ ∈ [0, 1], if its probability mass function is given by

fX : {0, 1} → [0, 1], x 7→ fX(x) := µx(1− µ)1−x. (S1.27)

We write X ∼ B(µ), if X has a Bernoulli distribution with parameter µ. The distribution function of
a Bernoulli distributed random variable X is given by

FX : R→ [0, 1], x 7→ FX(x) :=


0 x < 0

1− µ 0 ≤ x < 1

1 x ≥ 1

. (S1.28)

The expected value of a Bernoulli distributed random variable X is given by

E(X) =
∑
x=0,1

xfX(x) = 0 · (1− µ) + 1 · µ = µ. (S1.29)

The Bernoulli distribution is visualized in Figure 1A.

The Binomial distribution

A random variable X with discrete outcome space N0
n = {0, 1, ..., n} is said to have a Binomial distri-

bution with parameter µ, if its probability mass function is given by

fX : N0
n → [0, 1], x 7→

(
n
x

)
µx(1− µ)n−x, (S1.30)

where (
n
x

)
=

n!

x!(n− x)!
(S1.31)

denotes the Binomial coefficient. We write X ∼ BNn(µ), if X has a Binomial distribution with
parameter µ on the outcome space N0

n. Without proof, we note that the Binomial distribution can
be understood as the distribution of a random variable X that represents the sum of n independent
Bernoulli random variables, each distributed with parameter µ. For n = 1, the Binomial distribution
BN1(µ) is identical to the Bernoulli distribution B(µ). The cumulative probability mass function of a
Binomial distributed random variable X is given by

FX : N0
n → [0, 1], x 7→

x∑
i=0

(
n
i

)
µi(1− µ)n−i. (S1.32)

The expected value of a Binomial distributed random variable X is given by

E(X) = nµ. (S1.33)
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The Binomial distribution is visualized in Figure 1B for n = 10 and varying parameter values of µ.

The exponential distribution

A random variable X with continuous outcome space R≥0 is said to have an exponential distribution
with parameter λ > 0, if its probability density function is given by

fX : R≥0 → R>0, x 7→ fX(x) := λ exp(−λx). (S1.34)

We write X ∼ Exp(λ), if X has an exponential distribution with parameter λ > 0. The cumulative
density function of an exponentially distributed random variable X is given by

FX : R≥0 → [0, 1], x 7→ FX(x) :=

∫ x

0
fX(t) dt = 1− exp(−λx). (S1.35)

The expected value of an exponentially distributed random variable X is given by

E(X) =

∫ ∞
0

xλ exp(−λx) dx =
1

λ
. (S1.36)

The exponential distribution is visualized in Figure 1C.

The Poisson distribution

A random variable X with discrete outcome space N0 := {0, 1, 2, ...} is said to have a Poisson distri-
bution with parameter λ > 0, if its probability mass function is given by

fX : N0 → [0, 1], x 7→ fX(x) =
λx exp(−λ)

x!
. (S1.37)

We write X ∼ Poiss(λ), if X has a Poisson distribution with parameter λ > 0. The cumulative
probability mass function of a Poisson distributed random variable X is given by

FX : R→ [0, 1], x 7→ FX(x) :=
Γ̃(bx+ 1c, λ)

bxc!
, (S1.38)

where b·c denotes the floor function, which returns the greatest integer equal to or less than its input ar-
gument, and Γ̃(·, ·) is the upper incomplete Gamma function. The expected value of Poisson-distributed
random variable X is given by

E(X) =

∞∑
x

x
λx exp(−λ)

x!
= λ. (S1.39)

The Poisson distribution is visualized in Figure Figure 1D.
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Figure 1. (A) The Bernoulli distribution. The left panel depicts the probability mass functions for the Bernoulli
distributions with parameters µ = 0.1, 0.5, 0.6 respectively. The coloured dots on the x-axis correspond to the expected
values of the respective distribution. The right panel depicts the cumulative mass functions corresponding to the
probability mass functions in the left panel. (B) The Binomial distribution for n = 10. The left panel depicts the
probability mass functions for Binomial distributions with parameters µ = 0.1, 0.5, 0.6 respectively. The coloured dots
on the x-axis correspond to the expected values of the respective distribution. The right panel depicts the cumulative
mass functions corresponding to the probability mass functions in the left panel. (C) The exponential distribution.
The right panel depicts the probability density functions for the exponential distributions with parameter λ = 0.5, 1, 2
respectively. The coloured dots on the x-axis correspond to the expected values of the respective distribution. The
right panel depicts the cumulative density functions corresponding to the probability density functions in the left panel.
(D) The Poisson distribution. The right panel depicts the probability mass functions of the Poisson distributions with
parameters λ = 1, 3, 4 respectively. The coloured dots on the x-axis correspond to the expected values of the respective
distribution. The right panel depicts the cumulative mass functions corresponding to the probability mass functions in
the left panel. Again, the dotted lines are plotted for visualization purposes only. For implementational details, please
see rfp_7.m.
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Supplement S2. Hypothesis testing and FWER control

In this Appendix, we review a few core concepts from the theory of statistical hypothesis testing and
test error rate control. Our treatment primarily aims to establish that maximum statistics enable
family-wise error rate control, as capitalized on by RFP for both cluster- and peak-level inference. The
material presented in this section draws heavily on the exposition provided by Dickhaus (2014).

Parametric statistical models and the single test scenario

Both single and multiple statistical hypothesis testing problems and their associated error rates can
be developed against the background of a data sample and a parametric statistical model. Using the
language of mathematical probability theory (cf. Appendix A. Probability theory), we define these
entities as follows.

Definition 1 (Data sample, parametric statistical model). Let
(

Ω,A,
{
Pθ
}
θ∈Θ

)
denote a family of proba-

bility spaces defined by a family of probability measures
{
Pθ
}
θ∈Θ

, where for a fixed θ ∈ Θ, Pθ denotes
a probability measure on A and the set Θ is referred to as parameter space. Further, let (Y,F) denote
a measurable space, where Y is referred to as sample space and F denotes a σ-field on Y. Then a data
sample is a random variable

Y : Ω→ Y. (S2.1)

For a fixed member
(
Ω,A,Pθ

)
of the family of probability spaces, let the distribution of Y be denoted

by PθY . Then the family of probability spaces(
Y,F ,

{
PθY
}
θ∈Θ

)
(S2.2)

induced by Y and {Pθ}θ∈Θ is called a parametric statistical model. •
A parametric statistical model constrains the space of models that are used to explain an observed data
set. Usually, the family of probability distributions

{
PθY
}
θ∈Θ

is of some common functional form and
parameterized by a relatively small set of parameters. A familiar example for a parametric statistical
model in fMRI research is the GLM formulation for first-level fMRI data analysis (Poline and Brett,
2012; Monti, 2011; Starke and Ostwald, 2017): in this case, the sample space Y corresponds to Rnt ,
where nt is the number of acquired fMRI data volumes (time points), the Borel σ-algebra is used for
F , and the family {PθY }θ∈Θ corresponds to a family of multivariate Gaussian distributions, which is
parameterized by a vector of beta parameters and a vector of covariance component parameters.

Against the background of a statistical model, the logic of statistical hypothesis testing is charac-
terized by a partition of the parameter space Θ into two disjoint subsets. A statistical hypothesis is a
statement about the relation of the true, but unobservable, parameter value θ ∈ Θ in relation to these
subsets:

Definition 2 (Null hypothesis, alternative hypothesis). Let Θ denote the parameter space of a parametric
statistical model, and let

Θ0 ⊂ Θ,Θ0 6= ∅ and Θ1 := Θ\Θ0. (S2.3)

Then the statement “θ ∈ Θ0” is referred to as a null hypothesis, and the statement “θ ∈ Θ1” is referred
to as an alternative hypothesis. •
For conceptual ease, we identify the notion of a statistical hypothesis with a subset of parameter space,
i.e., we will call Θ0 a null hypothesis and Θ1 an alternative hypothesis. Together with a parametric
statistical model, a single null hypothesis Θ0 forms a single test problem:
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Definition 3 (Single test problem). A tuple(
Y,F ,

{
PθY
}
θ∈Θ

,H
)
, (S2.4)

where (Y,F , {PθY }θ∈Θ) is a parametric statistical model and H := {Θ0} is a set comprising a single
null hypothesis, is called a single test problem. •
It may appear redundant to specify H = {Θ0} in the definition of the single test problem. However,
this affords a straightforward generalization to the multiple test problem as introduced below. Note
that a single test problem is more commonly referred simply as a test problem. Given a test problem,
a statistical test can be defined as follows.

Definition 4 (Statistical test). Let Y denote a data sample on a family of probability spaces
(
Ω,A, {Pθ}θ∈Θ

)
and let (Y,F , {PθY }θ∈Θ) denote the ensuing statistical model. Then a statistical test is a mapping

φ : Ω→ {0, 1}, ω 7→ φ(Y )(ω), (S2.5)

where φ(Y )(ω) = 0 represents the act of not rejecting the null hypothesis, while φ(Y )(ω) = 1 represents
the act of rejecting the null hypothesis. •

When evaluating a statistical test, two kinds of errors can occur. First, the null hypothesis can be
rejected, i.e., the event {φ(Y ) = 1} occurs, when in fact the true, but unknown, parameter conforms
to the null hypothesis, i.e., θ ∈ Θ0. This error is referred to as Type I error. Second, the null
hypothesis may not be rejected, i.e., the test evaluates to {φ(Y ) = 0}, when in fact the true, but
unknown, parameter conforms to the alternative hypothesis, i.e., θ ∈ Θ1. This error is referred to as
Type II error. When designing tests, both the probabilities of Type I errors and of Type II errors
are of general concern, in particular, if such tests are used in decision contexts in which quantifiable
consequences result from each type of error (e.g., Shao, 2003). However, in the context of RFP and
current discussions on the validity of scientific findings (e.g., Ioannidis (2005), Button et al. (2013),
David et al. (2018)), emphasis is usually placed on the probabilities of Type I errors. Probabilities
of Type II errors are typically known to be optimally minimal under a given Type I error probability
for a given test (as in the case of the Neyman and Pearson (1933) likelihood ratio tests) or to be
addressed by increasing sample sizes (as in current debates in cognitive neuroimaging, e.g., Poldrack
et al. (2017)). In the remainder, we shall thus only be concerned with the probability of Type I errors.
We use the following definition:

Definition 5 (Single test error rate (STER)). The single-test error rate of a statistical test φ for a true,
but unknown, parameter θ ∈ Θ0 is the probability of a Type I error of the test, i.e.,

STER(φ, θ) := PθY (φ(Y ) = 1) . (S2.6)

•
Note that the single test error rate of a test φ is evaluated for a given parameter θ ∈ Θ0, as evident
from the probability measure PθY that determines the probability of the event

{φ(Y ) = 1} = {ω ∈ Ω|φ(Y )(ω) = 1}. (S2.7)

Further note that we chose the acronym STER to emphasize the relation of this error rate to the
family-wise error rate, which is typically abbreviated by FWER. The probability for a Type I error
is also known as the size of a statistical test. The definition of the STER provides the basis for the
concept of STER control at a desired significance level:
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Definition 6 (STER control). A test φ is said to control the STER at a significance level α ∈ [0, 1], if

STER(φ, θ) ≤ α for all θ ∈ Θ0. (S2.8)

•
Note that the definition of the STER concerns a single θ ∈ Θ0, while the notion of STER control
concerns all θ ∈ Θ0. Tests that control the STER in the sense of the above are known as exact or
conservative tests, if equality or strict inequality holds in eq. (S2.8), respectively.

We next consider the type of classical statistical tests that is of interest in mass-univariate GLM-
based fMRI data analysis. Clearly, these are one-sided Z- and T-test, and F-tests (Friston et al., 2007).
Following Dickhaus (2014), we summarize their common features under the label Neyman-Pearson
type tests in the following definition.

Definition 7 (Neyman-Pearson type tests). Let
(
Y,F ,

{
PθY
}
θ∈Θ

,H
)
denote a single test problem, and

let φ denote a statistical test. We refer to φ as a Neyman-Pearson type test, if

• φ is based on a real-valued test statistic

γ : Y → R, y 7→ γ(y) (S2.9)

such that the test can be written

φ : Ω→ {0, 1}, ω 7→ φ(γ(Y ))(ω), (S2.10)

• φ is characterized by rejection regions Γα ⊆ R for any given significance level α ∈ [0, 1], such that

γ(y) /∈ Γα ⇒ φ(γ(y)) = 0 and γ(y) ∈ Γα ⇒ φ(γ(y)) = 1 for all y ∈ Y, (S2.11)

• the rejection regions are nested, i.e.,

Γα ⊂ Γα′ for α < α′, (S2.12)

• the test statistic γ fulfils the monotonicity condition

Pθ0Y (γ(Y ) > c) ≤ Pθ1Y (γ(Y ) > c) for all θ0 ∈ Θ0, θ1 ∈ Θ1, and c ∈ R, (S2.13)

• for all α ∈ [0, 1], there exists a critical value cα ∈ R such that

φ : Ω→ {0, 1}, ω 7→ φ(γ(Y ))(ω) :=

{
0, γ(Y (ω)) ≤ cα
1, γ(Y (ω)) > cα,

(S2.14)

and

• φ controls the STER at significance level α ∈ [0, 1], if

cα := F−1
γ,θ (1− α), (S2.15)

where F−1
γ,θ denotes the inverse distribution function of the test statistic γ for θ ∈ Θ0.

•

12



It should be evident, that the definition of Neyman-Pearson type tests merely formally generalizes the
familiar procedure of computing a Z-, T -, or F -test statistic based on some observed data and rejecting
the null hypothesis, if the thus evaluated test statistic is larger than a critical value, which depends
on the desired level of significance. Neyman-Pearson type tests allow for basing test procedures on the
p-values of observed test statistics.

Definition 8 (p-value). Let
(
Y,F ,

{
PθY
}
θ∈Θ

,H
)

denote a single test problem, and let φ denote a
Neyman-Pearson type test. Then the p-value of an observation y ∈ Y with respect to the Neyman-
Pearson type test φ is defined as

pφ : Y → [0, 1], y 7→ pφ(y) := sup
θ∈Θ0

PθY (γ(Y ) ≥ γ(y)) . (S2.16)

•
The p-value of an observation y ∈ Y is thus given by the largest probability of the data sample
dependent test statistic γ(Y ) to assume values equal to or larger than the test statistic evaluated for
y. If the null hypothesis comprises a single element only, e.g. Θ0 = {θ0}, then

pφ(y) = Pθ0Y (γ(Y ) ≥ γ(y)) . (S2.17)

We note without proof that because pφ(y) ≤ α implies that γ(y) ≥ cα, setting φ(Y ) = 1 if pφ(y) ≤ α
for a test φ that controls the STER at significance level α also controls the STER at significance level
α.

The multiple testing scenario

We are now in the position to develop the multiple testing scenario in analogy to the single test scenario.

Definition 9 (Multiple testing problem). A multiple testing problem is a tuple(
Y,F , {PθY }θ∈Θ,H

)
, (S2.18)

where
(
Y,F , {PθY }θ∈Θ

)
is a parametric statistical model and

H :=
{

Θ
(i)
0

∣∣i ∈ I} (S2.19)

is a family of null hypotheses for an arbitrary index set I. •
A multiple test can then be defined as follows (Dickhaus, 2014):

Definition 10 (Multiple test). Given a multiple testing problem
(
Y,F , {PθY }θ∈Θ,H

)
and a family of

statistical tests {φi}i∈I , a multiple test is a mapping

Φ : Ω→
∏
i∈I
{0, 1}, ω 7→ Φ(Y )(ω) := (φi(Y ))i∈I(ω), (S2.20)

where
∏

denotes the Cartesian product.
•

If |I| = n for n ∈ N, a multiple test can thus be conceived as an n-dimensional vector of single statistical
tests φi that is governed by an n-dimensional probability distribution PθΦ.

A given data-analytical context usually allows for a large variety of multiple testing problems and

13



multiple tests. In the context of RFP, this is echoed by the fact that for a single first-level GLM-based
fMRI data analysis, multiple testing problems can be conceived (and controlled) at different “levels
of inference”, such as the “cluster”- and the “peak-level” (cf. Section 4.2). Given a multiple testing
problem and a multiple test, the family-wise error rate can then be defined as follows:

Definition 11 (Family-wise error rate (FWER)). Let (Y,F , {PθY }θ∈Θ,H) denote a multiple testing prob-
lem, and let Φ denote a multiple test. For θ ∈ Θ, let

Iθ0 :=
{
i ∈ I|θ ∈ Θ

(i)
0

}
⊆ I (S2.21)

denote the index set for which θ ∈ Θ
(i)
0 . Then

FWER(Φ, θ) := PθY
(
∪j∈Iθ0 {φj(Y ) = 1}

)
(S2.22)

is called the family-wise error rate of Φ under θ.
•

A number of points are noteworthy about the definition of the FWER. First, like the STER, the
FWER depends on the true, but unknown, value of the parameter θ. Because, in contrast to the STER
scenario, there are multiple null hypotheses, it is possible for θ to be an element of only some of them.
The indices of these null hypotheses are collected in the index set Iθ0 , and the FWER is evaluated
only with respect to the corresponding null hypotheses. Second, for θ ∈ Θ(i), the event of interest
{φi(Y ) = 1} is the same as for the STER, namely that the null hypothesis is rejected, when it is in fact
true. The combination over multiple null hypotheses and tests is then achieved by a union operation
over all j ∈ Iθ0 . Crucially, the union operation entails a logical and/or operation: the statement

{φj1(Y ) = 1} ∪ {φj2(Y ) = 1} ∪ · · · ∪ {φjm(Y ) = 1} for jk ∈ Iθ0 , k = 1, ..., |Iθ0 | (S2.23)

means that the event {φj1(Y ) = 1} occurred and/or the event {φj2(Y ) = 1} and/or ... and/or the
event {φjm(Y ) = 1} occurred. But this means that one or more of the events {φj(Y ) = 1}, j ∈ Iθ0
occurred. Equivalently, the statement can be read as that the ω ∈ Ω, the probability measure of which
is evaluated by PθY , are mapped onto 1 by φj1(Y ) and/or φj2(Y ) and/or ... and/or φjm(Y ), i.e., they
are mapped onto 1 by one or more φj , j ∈ Iθ0 . In brief, the union operation in the definition of the
FWER thus encodes the standard interpretation of the FWER as the “probability that one or more
false-positives occur in the set of null hypotheses tested”.

The FWER can be controlled in a weak and in a strong sense. We will focus on weak-sense FWER
control, for which we first introduce the notion of a global null hypothesis.

Definition 12 (Global null hypothesis). Let (Y,F , {PθY }θ∈Θ,H) denote a multiple testing problem. Then
the conjunction hypothesis

Θ̃0 := ∩i∈IΘ(i)
0 (S2.24)

is called the global null hypothesis. •

Note that the statement θ ∈ Θ̃0 thus implies that θ ∈ Θ
(i)
0 for all i ∈ I, i.e., if θ denotes the true,

but unknown, parameter value “all null hypotheses are true”. The global null hypothesis is of primary
interest in the definition of weak FWER control:

Definition 13 (Weak FWER control). Let (Y,F , {PθY }θ∈Θ,H) denote a multiple testing problem, and let
Φ denote a multiple test. Further, let Θ̃0 denote the global null hypothesis. Then a multiple test Φ is
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said to control the FWER in the weak sense at a significance level α ∈ [0, 1], if

FWER(Φ, θ) ≤ α for all θ ∈ Θ̃0. (S2.25)

•
Note that like for the STER, the definition of the FWER concerns a single θ ∈ Θ, while the definition
of weak-sense FWER control relates to all θ ∈ Θ̃0. Moreover, note that the condition θ ∈ Θ̃0 implies
that weak-sense FWER control is established if

PθY (∪i∈I{φi(Y ) = 1}) ≤ α. (S2.26)

Maximum-based FWER control

The FWER controlling procedures developed under the RFP framework are instantiations of maximum-
based simultaneous test procedures (Gabriel, 1969; Dickhaus, 2014). Based on our developments on the
single and multiple testing scenarios above, we define a maximum-based simultaneous test procedures
as follows:

Definition 14 (Maximum-based simultaneous test procedures). Let (Y,F ,
{
PθY
}
θ∈Θ

,H) denote a multi-
ple testing problem with global null hypothesis Θ̃0 = {θ0}, let Φ denote a multiple test comprising
generalized Neyman-Pearson type tests φi with associated real-valued statistics γi for i ∈ I, and let

γm(Y ) := max
i∈I

γi(Y ) (S2.27)

denote the maximum statistic. Then the multiple test Φ is a called a maximum-based simultaneous
test procedure of significance level α ∈ [0, 1], if

φi : Ω→ {0, 1}, ω 7→ φi(γ(Y ))(ω) :=

{
0, γi(Y (ω)) ≤ cα
1, γi(Y (ω)) > cα

(S2.28)

for all i ∈ I, and cα is determined such that

Pθ0Y (γm(Y ) > cα) ≤ α. (S2.29)

•
The fundamental idea of FWER control in the context of RFP is the fact that maximum-based simul-
taneous test procedures control the FWER of a multiple testing problem in the weak sense. To see
this, let θ ∈ Θ̃0. Then

PθY (∪i∈I{φi(Y ) = 1}) = 1− PθY (∩i∈I{φi(Y ) = 0})
= 1− PθY ({γi(Y ) ≤ cα|i ∈ I})
= 1− PθY (γm(Y ) ≤ cα)

= PθY (γm(Y ) > cα) .

≤ α.

(S2.30)

In verbose form: the probability of the event that one or more tests φi constituting the simultaneous
test procedure Φ evaluate to 1 is equal to the complementary probability of the event that all tests φi
evaluate to 0. Given the Neyman-Pearson type form of the φi, this corresponds to the complementary

15



probability of the event that all test statistics γi(Y ) take on values equal to or smaller than the critical
value cα. The latter event is identical to the event that the maximum statistic γm(Y ) is equal to or
smaller than the critical value cα. The formation of the complementary probability of this event and
the definition of the maximum-based simultaneous test procedure then imply that the probability of
the event that one or more tests φi constituting the simultaneous test procedure Φ evaluate to 1 is
smaller than α, which is equivalent to weak-sense FWER control (cf. eq. (S2.26)). This concludes our
discussion of FWER control by means of maximum statistics.
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Supplement S3. Proofs

Supplement S3.1. Gaussian covariance functions and smoothness

We first collect a number of results on the relationships between a random field’s expectation and
covariance functions and the expectation and covariance functions of its gradient. We retrieve these
results from Abrahamsen (1997, pp. 22 - 26), with proofs delegated to Christakos (1992).

Derivatives of Gaussian random fields

Let X(x), x ∈ Rn denote a GRF on a probability space (Ω,A,P). Assume that X(x), x ∈ Rn has
differentiable sample paths. Then, for fixed ω ∈ Ω, the gradient field of X(x) is defined as

∇X(x) :=
(

∂
∂xi
X(x)

)
1≤i≤n

:=
(

limh→0
X(x+hei)−X(x)

h

)
1≤i≤n

∈ Rn, (S3.1)

where ei denotes the ith unit basis vector of Rn. Note that like the GRF X(x), x ∈ Rn, the gradient
field is a function of both the spatial coordinates x ∈ Rn and the (random) elementary outcomes ω ∈ Ω.
Let m and c denote the expectation and covariance functions of the GRF X(x), x ∈ Rn, respectively.
Then the expectation function of the ith component of the gradient field is given by

ṁi : Rn → R, x 7→ ṁi(x) := E
(
∂

∂xi
X(x)

)
=

∂

∂xi
m(x) for i = 1, ..., n (S3.2)

and the covariance function of the ith and jth components of the gradient field is given by

ċij : Rn × Rn → R, (x, y) 7→ ċij(x, y) := C
(
∂

∂xi
X(x),

∂

∂yj
X(y)

)
=

∂2

∂xi∂yj
c(x, y) (S3.3)

for i, j = 1, ..., n. In words, the value of the expectation function of the ith component of a GRF’s
gradient field is given by the value of the ith partial derivative of the GRF’s expectation function,
and the value of the covariance function of the ith and jth components of a GRF’s gradient field at
locations x and y is given by the second-order partial derivative of the GRF’s covariance function for
x and y with respect to the ith component of x and the jth component of y. Eq. (S3.3) provides an
explicit expression for the variance matrix of a GRF’s gradient components in terms of the covariance
function of the GRF. To see this, let X(x), x ∈ Rn with covariance function c. Let the variance matrix
of the partial derivatives of X at location x ∈ Rn be given by

V(∇X(x)) :=
(
C
(

∂
∂xi
X(x), ∂

∂xj
X(x)

))
1≤i,j≤n

. (S3.4)

Then, from (S3.3), we have

C
(
∂

∂xi
X(x),

∂

∂xj
X(x)

)
=

∂2

∂xi∂xj
c(x, x) for 1 ≤ i, j ≤ n. (S3.5)

Proof of eq. (43)

To now show eq. (43), we proceed in five steps. We first show that for a (mean-square differentiable)
random process X(x), x ∈ R the covariance of its derivative at locations x, y ∈ R corresponds to the
second derivative of its covariance function with arguments and x and y (Christakos, 1992, pp. 43 -
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47), i.e.,

C
(
Ẋ(x), Ẋ(y)

)
=

∂2

∂x∂y
c(x, y). (S3.6)

We then consider the special case of a covariance function c(x, y) that can be written as a function
c̃(δ) of the difference δ = x − y between its input arguments and show that in this case (Christakos,
1992, p. 71),

∂2

∂x∂y
c(x, y) = − d2

dδ2
c̃(δ). (S3.7)

Next, we show that in this case

V(Ẋ(x)) = − d2

dδ2
γ̃(δ). (S3.8)

We then consider the second-order derivative of the GCF γ̃ and show that

− d2

dδ2
γ̃(δ) = −4δ2 − 2`2

`4
γ̃(δ). (S3.9)

Finally, we show that it then follows that

ς =
`√
2
. (S3.10)

(I) (S3.6) can be seen for a mean-square differentiable random process with constant zero mean function
m(x) = 0 in general as follows. Recall that the ith partial derivative of a multivariate real-valued
function

f : Rn → R, x 7→ f(x) (S3.11)

at a point a ∈ Rn is defined as

∂

∂xi
f(a) := lim

h→0

f(a1..., ai + h, ..., an)− f(a1, ..., ai, ..., an)

h
. (S3.12)

Then, the left-hand side of (S3.6) can be rewritten as

C
(
Ẋ(x), Ẋ(y)

)
= E

(
Ẋ(x)Ẋ(y)

)
= E

(
lim
h,r→0

1

hr
((X(x+ h)−X(x))(X(y + r)−X(y))

)
= E

(
lim
h,r→0

1

hr
(X(x+ h)X(y + r)−X(x+ h)X(y)−X(x)X(y + r) +X(x)X(y)))

)
= lim
h,r→0

1

hr
E (X(x+ h)X(y + r)−X(x+ h)X(y)−X(x)X(y + r) +X(x)X(y))

= lim
h,r→0

1

hr
(E(X(x+ h)X(y + r))− E(X(x+ h)X(y))− E(X(x)X(y + r)) + E(X(x)X(y)))

= lim
h,r→0

1

hr
(c(x+ h, y + r)− c(x+ h, y)− c(x, y + r) + c(x, y))

= lim
h→0

1

h
lim
r→0

1

r
(c(x+ h, y + r)− c(x+ h, y)− (c(x, y + r)− c(x, y)))

= lim
h→0

1

h

(
∂

∂y
c(x+ h, y)− ∂

∂y
c(x, y)

)
=

∂2

∂x∂y
c(x, y),

(S3.13)

where we repeatedly assumed the appropriateness of exchanging limits and integrals, capitalized on
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the definition of the covariance function, and exploited the fact that m(x) = 0, x ∈ R.

(II) (S3.7) can be seen by considering a covariance function

c : R2 → R, (x, y) 7→ c(x, y) (S3.14)

which can be expressed as a function of the distance δ = x − y between x and y, i.e., that with a
function

c̃ : R→ R, δ 7→ c̃(δ), (S3.15)

and the function
f : R2 → R, (x, y) 7→ f(x, y) := x− y (S3.16)

we can write
c(x, y) = c̃(f(x, y)). (S3.17)

Then we have

∂2

∂x∂y
c(x, y) =

∂2

∂x∂y
c̃(f(x, y))

=
∂

∂x

(
∂

∂y
(c̃(f(x, y)))

)
=
∂

∂x

(
∂

∂y
c̃(f(x, y))

∂

∂y
f(x, y)

)
=
∂

∂x

(
− ∂

∂y
c̃(f(x, y))

)
=− ∂2

∂x∂y
c̃(f(x, y))

=− d2

dδ2
c̃(δ),

(S3.18)

where the last step follows with the definition of the total differential.

(III) With (S3.6) and (S3.7) we have for x = y:

V
(
Ẋ(x)

)
= C

(
Ẋ(x), Ẋ(x)

)
=

∂2

∂x∂x
γ(x, x) = − d2

dδ2
γ̃(0). (S3.19)

(IV) We have
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− d2

dδ2
γ̃(δ) = − d

dδ

(
d

dδ
γ̃(δ)

)
= − d

dδ

(
d

dδ

(
v exp

(
−δ

2

`2

)))
= − d

dδ

(
γ̃(δ)

(
−2δ

`2

))
= − d

dδ
γ̃(δ)

(
−2δ

`2

)
+ γ̃(δ)

d

dδ

(
−2δ

`2

)
= −γ̃(δ)

(
−2δ

`2

)(
−2δ

`2

)
+ γ̃(δ)

d

dδ

(
−2δ

`2

)
= −4δ2

`4
γ̃(δ)− 2

`2
γ̃(δ)

= −4δ2 − 2`2

`4
γ̃(δ).

(S3.20)

(V) With δ = 0, we obtain from (S3.9)

V
(
Ẋ(x)

)
=

2

`2
. (S3.21)

Finally, substitution of (S3.21) in eq. (42) then yields

ς =

∫
[0,1]

(
2

`2

)− 1
2

dx =

∫
[0,1]

`√
2
dx =

`√
2
. (S3.22)

2

Supplement S3.2. Elements of smoothness reparameterization

Proof of eq. (46)

The full width at half maximum fx of a univariate real-valued function h with a maximum at xm is
defined as the distance

fx := |x1 − x2| (S3.23)

of two points x1 ≤ xm ≤ x2, such that

h(x1) = g(x2) =
1

2
h(xm). (S3.24)

Let
g : R→ R, x 7→ g(x) :=

1√
2πσ2

exp

(
− 1

2σ2
(x− µ)2

)
(S3.25)

denote the Gaussian function with parameters µ ∈ R and σ2 > 0. Then we have
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g(x) =
1

2
g(xm)

⇔ 1√
2πσ2

exp

(
− 1

2σ2
(x− µ)2

)
=

1

2

1√
2πσ2

exp

(
− 1

2σ2
(xm − µ)2

)
⇔ exp

(
− 1

2σ2
(x− µ)2

)
=

1

2
exp

(
− 1

2σ2
(xm − µ)2

)
⇔ exp

(
− 1

2σ2
(x− µ)2

)
=

1

2
exp

(
− 1

2σ2
(µ− µ)2

)
⇔ exp

(
− 1

2σ2
(x− µ)2

)
=

1

2

⇔ − 1

2σ2
(x− µ)2 = − ln 2

⇔ (x− µ)2 = 2 ln 2σ2

(S3.26)

Assuming that g is centered on zero, i.e., µ = 0, then yields

x2 = 2 ln 2σ2 ⇒ x1,2 = ±
√

2 ln 2σ (S3.27)

such that
fx = |x2 − x1| = 2

√
2 ln 2σ =

√
8 ln 2σ. (S3.28)

2

Diagonal elements of Λ

Here we show that the diagonal elements of the variance matrix of gradient components of a random
field that results from the convolution of a white-noise GRF with an isotropic Gaussian convolution
kernel parameterized by FWHMs are of the form specified in eq. (47). To this end, we first collect a
number of results on the relationship between a Gaussian random field’s expectation and covariance
functions and the expectation and covariance functions of a weighted integral of the Gaussian random
field. Again, we retrieve these results from Abrahamsen (1997, pp. 22 - 26), with proofs delegated to
Christakos (1992).

Integrals of random fields

Let X(x), x ∈ Rn denote a GRF with an everywhere continuous correlation function, and let

w : Rn × Rn, (x, y) 7→ w(x, y) (S3.29)

denote a piecewise continuous, bounded, and everywhere differentiable function. Then the Riemann
integrals

Y (x) :=

∫
S
X(s)w(x, s) ds for x ∈ Rn (S3.30)

define a GRF on S ⊂ Rn . Let mX and cX denote the expectation and covariance functions of
X(x), x ∈ Rn, respectively. Then the expectation and covariance functions of Y (x), x ∈ S are given in
terms of the expectation and covariance functions of X(x), x ∈ Rn and w by

mY : S → R, x 7→ mY (x) := E(Y (x)) =

∫
S
mX(s)w(x, s) ds (S3.31)
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and

cY : S × S → R, (x, y) 7→ cY (x, y) := C(Y (x), Y (y)) =

∫
S

∫
S
cX(s, t)w(x, t)w(y, s) ds dt. (S3.32)

In words, the expectation and covariance functions of the GRF resulting from the weighted integration
of a GRF X(x), x ∈ Rn are given by the weighted integrals of the expectation and covariance functions
of the GRF X(x), x ∈ R, respectively. Furthermore, the gradient field of Y is given by

∇Y (x) :=
(

∂
∂xi
Y (x)

)
1≤i≤n

=
(∫

S X(s) ∂
∂xi
w(x, s) ds

)
1≤i≤n

, (S3.33)

the expectation function of the ith component of the gradient field of Y (x), x ∈ S is given by

ṁYi : Rn → R, x 7→ ṁYi(x) := E
(
∂

∂xi
Y (x)

)
=

∫
S
mX(s)

∂

∂xi
w(x, s) ds (S3.34)

for i = 1, ..., n, and the covariance function of the ith and jth components of the gradient field of
Y (x), x ∈ Rn is given by

ċYij : Rn × Rn → R, (x, y) 7→ ċYij (x, y) := C
(
∂

∂xi
Y (x),

∂

∂yj
Y (y)

)
=

∫
S

∫
S
cX(s, t)

∂

∂xi
w(x, t)

∂

∂yj
w(y, s) ds dt (S3.35)

for i, j = 1, ..., n. In words, the expectation and covariance functions of the GRF Y (x), x ∈ S can
be evaluated based on the expectation and covariance functions of the GRF X(x), x ∈ S and the
partial derivatives of the weighting function w. As above, (S3.35) provides an explicit expression for
the variance matrix of the GRF Y (x), x ∈ S’s gradient components for the case that the GRF is
constructed by means of a weighted integral of a GRF X(x), x ∈ Rn. Specifically, let the variance
matrix of the partial derivatives of Y at location x ∈ S be given by

C(∇Y (x)) :=
(
C
(

∂
∂xi
Y (x), ∂

∂xj
Y (x)

))
1≤i,j≤n

. (S3.36)

Then, from (S3.35), we have

C
(
∂

∂xi
Y (x),

∂

∂xj
Y (x)

)
=

∫
S

∫
S
cX(s, t)

∂

∂xi
w(x, t)

∂

∂xj
w(x, s) ds dt. (S3.37)

.

Proof for the diagonal elements in eq. (47)

Let wg denote an isotropic Gaussian convolution kernel, i.e.,

wg : R3 × R3 → R>0, (x, y) 7→ wg(x, y) :=
3∏

k=1

gσk(xk, yk) (S3.38)

where

gσk : R× R→ R>0, (xk, yk) 7→ gσk(xk, yk) := (2π)−
1
2 (σk)

−1 exp

(
− 1

2σ2
k

(xk − yk)2

)
. (S3.39)
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Further, let W (x), x ∈ R3 denote a stationary white-noise GRF, i.e., GRF with expectation function

mW (x) := 0 (S3.40)

and

cW (x, y) :=

{
σ2
W := 1

2(4π)
3
2σ1σ2σ3 for x = y

0 for x 6= y.
(S3.41)

Finally, let

Y (x) =

∫
R3

W (s)wg(x, s) ds (S3.42)

denote the GRF that results from the convolution of W (x), x ∈ R3 with the Gaussian convolution
kernel wg. With (S3.37), the entries of the variance matrix of the gradient field of Y (x), x ∈ R3 are
then given by

C
(
∂

∂xi
Y (x),

∂

∂xj
Y (x)

)
=

∫
R3

∫
R3

cW (s, t)
∂

∂xi
wg(x, t)

∂

∂xj
wg(x, s) ds dt. (S3.43)

To show that the diagonal entries of V(∇Y (x)) are of the form specified in eq. (47) we are thus led in
step (I) to evaluate the partial derivatives of the convolution kernel wg(x, y) with respect to its first
argument and in step (II) to evaluate the integral eq. (S3.43). We show below that this results in

V
(

∂

∂xd
Y (x)

)
=

1

2σ2
d

for d = 1, 2, 3. (S3.44)

In step (III), we then substitute the variance parameter of wg by its FWHMs parameterization and
see that indeed,

V
(

∂

∂xd
Y (x)

)
= 4 ln 2f−2

xd
. (S3.45)

(I) We have

∂

∂xi
wg(x, y) = (2π)−

3
2 (σ1σ2σ3)

−1 ∂

∂xi

3∏
k=1

exp

(
− 1

2σ2
k

(xk − yk)2
)

= (2π)−
3
2 (σ1σ2σ3)

−1 ∂

∂xi
exp

(
− 1

2σ2
k

3∑
k=1

(xk − yk)2
)

= (2π)−
3
2 (σ1σ2σ3)

−1 exp

(
− 1

2σ2
k

3∑
k=1

(xk − yk)2
)

∂

∂xi

(
− 1

2σ2
i

(xi − yi)2
)

= −wg(x, y)
(
xi − yi
σ2
i

)
.

(S3.46)

(II) Substitution of (S3.46) in eq. (S3.43) then yields
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C
(

∂

∂xi
Y (x),

∂

∂xj
Y (x)

)
=

∫
R3

∫
R3

cW (s, t)

(
xi − ti
σ2
i

)
wg(x, t)

(
xj − sj
σ2
j

)
wg(x, s) ds dt

=

∫
R3

cW (t, t)

(
xi − ti
σ2
i

)
wg(x, t)

(
xj − tj
σ2
j

)
wg(x, t) dt

= σ2
W

∫
R3

(
xi − ti
σ2
i

)
wg(x, t)

(
xj − tj
σ2
j

)
wg(x, t) dt.

(S3.47)

We next consider the case i = j = 1, i.e., the first diagonal elements of the variance matrix of the
partial derivatives of Y (x), x ∈ R3. We have

V
(

∂

∂x1
Y (x)

)
= σ2

W

∫
R3

(
x1 − t1
σ2

1

)2

w2
g(x, t) dt

= σ2
W

∫
R3

(
x1 − t1
σ2

1

)2

w2
g(x, t) dt

= σ2
W

∫
R3

(
x1 − t1
σ2

1

)2 3∏
i=k

g2
σk (xk, tk) dt

= σ2
W

∫
R

(
x1 − t1
σ2

1

)2

g2
σ1(x1, t1) dt1

∫
R
g2
σ2(x2, t2) dt2

∫
R
g2
σ3(x3, t3) dt3.

(S3.48)

We consider the remaining integrals in reverse order. For the latter two integrals, we have with i = 2, 3
(cf. Jenkinson (2000, eqs. 9- 13))

∫
R
g2
σi(xi, ti) dti =

∫
R

(
1√
2πσ2

i

exp

(
− 1

2σ2
i

(xi − ti)2
))2

dti

=
1

2πσ2
i

∫
R
exp

(
− 1

σ2
i

(xi − ti)2
)
dti

=
1

2
(πσ2

i )
−1

∫
R
exp

(
− 1

σ2
i

(ti − xi)2
)
dti

=
1

2
(πσ2

i )
−1(πσ2

i )
1
2

=
1√
4πσ2

i

.

(S3.49)

For the first integral, we have

∫
R

(
x1 − t1
σ2

1

)2

g2
σ1(x1, t1) dt1 =

1

σ4
1

∫
R
(t1 − x1)

2g2
σ1(x1, t1) dt1

=
1

σ4
1

(∫
R
t21g

2
σ1(x1, t1) dt1 − 2x1

∫
R
t1g

2
σ1(x1, t1) dt1 + x2

1

∫
R
g2
σ1(x1, t1) dt1

)
=

1

σ4
1

(∫
R
t21g

2
σ1(x1, t1) dt1 − 2x1

∫
R
t1g

2
σ1(x1, t1) dt1 +

x2
1√

4πσ2
1

)
.

(S3.50)

For the remaining terms, we have
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2x1

∫
R
t1g

2
σ1(x1, t1) dt1 = 2x1

∫
R
t1

(
1√
2πσ2

1

exp

(
− 1

2σ2
1

(x1 − t1)2
))2

dt1

= 2x1
1

2πσ2
1

∫
R
t1 exp

(
− 1

σ2
1

(t1 − x1)
2

)
dt1

= 2x1
1

2πσ2
1

√
πσ2

1√
πσ2

1

∫
R
t1 exp

(
− 1

σ2
1

(t1 − x1)
2

)
dt1

= 2x1

√
πσ2

1

2πσ2
1

∫
R
t1

1√
πσ2

1

exp

(
− 1

σ2
1

(t1 − x1)
2

)
dt1

=
1√
4πσ2

1

2x2
1

(S3.51)

and

∫
R
t21g

2
σ1(x1, t1) dt1 =

∫
R
t21

(
1√
2πσ2

1

exp

(
− 1

2σ2
1

(x1 − t1)2
))2

dt1

=
1

2πσ2
1

∫
R
t21 exp

(
− 1

σ2
1

(x1 − t1)2
)
dt1

=
1

2πσ2
1

√
πσ2

1√
πσ2

1

∫
R
t21 exp

(
− 1

σ2
1

(x1 − t1)2
)
dt1

=

√
πσ2

1

2πσ2
1

∫
R
t21

1√
πσ2

1

exp

(
− 1

σ2
1

(x1 − t1)2
)
dt1

=
1√
4πσ2

1

(σ2
1 + x2

1).

(S3.52)

Substitution then yields

∫
R

(
x1 − t1
σ2

1

)2

g2
σ1(x1, t1) dt1 =

1

σ4
1

(
1√
4πσ2

1

(σ2
1 + x2

1)−
1√
4πσ2

1

(2x2
1) + √

4πσ2
1

x2
1

)

=
1

σ4
1

(
1√
4πσ2

1

(σ2
1 + x2

1 − 2x2
1 + x2

1)

)

=
1

σ4
1

(
σ2

1√
4πσ2

1

)

=
1

σ2
1

1√
4πσ2

1

.

(S3.53)

We thus obtain

V
(

∂

∂x1
Y (x)

)
= σ2

W
1

σ2
1

1√
4πσ2

1

1√
4πσ2

2

1√
4πσ2

3

= σ2
W

1

σ2
1

1

(4π)
3
2 σ1σ2σ3

=
1

2σ2
1

(4π)
3
2 σ1σ2σ3

(4π)
3
2 σ1σ2σ3

=
1

2σ2
1

.

(S3.54)
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The equivalent line of reasoning yields

V
(

∂

∂x2
Y (x)

)
=

1

2σ2
2

(S3.55)

and

V
(

∂

∂x3
Y (x)

)
=

1

2σ2
3

. (S3.56)

(III) With the above and the form of the FWHM of a univariate Gaussian eq. (46), we have

V
(

∂

∂xd
Y (x)

)
=

1

2σ2
d

=
1

2
(

(8 ln 2)−
1
2 fxd

)2
=

1

2(8 ln 2)−1f2xd

=
1

2
8 ln 2f−2xd

= 4 ln 2f−2xd

(S3.57)

for d = 1, 2, 3.
2

Supplement S3.3. Miscellaneous proofs

Proof of eq. (55)

Following Adler (1981, Section 1.7, pp. 18 - 19), eq. (55) can be seen as follows: appreciating that the
Lebesgue volume of the excursion set can be written using the indicator function as

λ(Eu) =

∫
S

1[u,∞[ (X(x)) dλ(x), (S3.58)

with respect to the Lebesgue measure, its expected value evaluates to

E(λ(Eu)) =

∫
S

(∫
S

1[u,∞[(X(x)) dλ(x)

)
dP(X(x))

=

∫
S

1 dP(X(x) ≥ u)

=

∫
S
P(X(x) ≥ u) dλ(x).

(S3.59)

In words, integrating the indicator function for the set of values x for which X(x) ≥ u is equivalent
to integrating the indicator function of the set S, i.e., the constant function 1 on S. This is in turn
identical to integrating P(X(x) ≥ u) with respect to Lebesgue measure. Now, because X is stationary,
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we have

E(λ(Eu)) =

∫
S
P(X(0) ≥ u) dλ(x)

=

∫
S

1S(x)P(X(0) ≥ u) dλ(x)

(S3.60)

and with the linearity of the integral, it follows that

E(λ(Eu)) =

∫
S

1S(x) dλ(x) · P(X(0) ≥ u)

= λ(S) · P(X(0) ≥ u)

= λ(S)(1− FX(u)).

(S3.61)

2

Proof of eq. (73)

Recall that for a real-valued random variable X with probability density function fX and an invertible
and differentiable function g : R→ R the probability density function fY of the (real-valued) random
variable Y := g(X) can be evaluated as

fY (y) =
fX(g−1(y))

|g′(g−1(y))|
, (S3.62)

where g′ and g−1 denote the derivative and inverse of g, respectively. In the current scenario, the result
by Nosko (1969b,a, 1970) and reiterated in Friston et al. (cf. 1994b, p. 212) and Cao (cf. 1999, p.587)

states that the size of a connected component of the excursion set K
2
D
u has an exponential distribution

with expectation parameter κ. In light of (S3.62), we thus have

f
K

2
D
u

(
k

2
D

)
:= κ exp

(
−κk

2
D

)
. (S3.63)

We define
g : R→ R, x 7→ g(x) := x

D
2 (S3.64)

such that the inverse of g is given by

g−1 : R→ R, y 7→ g−1(y) = y
2
D , (S3.65)

because then

g−1(g(x)) = g−1
(
x
D
2

)
=
(
x
D
2

) 2
D

= x. (S3.66)

Note that
g′ : R→ R, x 7→ g′(x) =

D

2
x
D
2
−1. (S3.67)

Substitution in eq. (S3.62) then yields for the probability density function fKu(k) of Ku:
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fKu
(k) =

f
K

2
D
u

(
g−1(k)

)
|g′(g−1(k))|

=
κ exp

(
−κg−1(k)

)
D
2 (g−1(k))

D
2 −1

=
κ exp

(
−κk 2

D

)
D
2

(
k

2
D

)D
2 −1

=
2κ

D
exp

(
−κk 2

D

)
k−( 2

D (D2 −1))

=
2κ

D
exp

(
−κk 2

D

)
k−(1− 2

D )

=
2κ

D
k

2
D−1 exp

(
−κk 2

D

)
.

(S3.68)

2

Proof of eq. (75)

By assuming that the distribution of Ku is absolutely continuous, we can prove eq. (75) by showing
that the functional form of the cumulative density function FKu is the anti-derivative of the probability
density function fKu defined in eq. (73). We have

F ′Ku
(k) =

d

dk

(
1− exp

(
−κk 2

D

))
= − d

dk
exp

(
−κk 2

D

)
= − exp

(
−κk 2

D

) d

dk

(
−κk 2

D

)
= − exp

(
−κk 2

D

)(
−κ 2

D
k

2
D−1

)
=

2κ

D
k

2
D−1 exp

(
−κk 2

D

)
= fKu(k)

(S3.69)

and see that indeed, eq. (75) specifies the anti-derivative of eq. (73).
2

Proof of eq. (82)

By the definition of marginal and conditional probabilities, we have

P(C≥k,u = i) =

∞∑
j=1

P(Cu = j, C≥k,u = i)

=

∞∑
j=1

P(Cu = j)P(C≥k,u = i|Cu = j).

(S3.70)
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Substitution of the Poisson and Binomial forms for P(Cu = j) and P(C≥k,u = i|Cu = j) and, for ease
of notation, defining a := E(Cu) and b := P(Ku ≥ k), then yields

P(C≥k,u = i) =
∞∑
j=1

aj exp(−a)

j!

j!

i!(j − i)!
bi(1− b)j−i. (S3.71)

Definition of v := j − i (and hence j = v + i) then results in

P(C≥k,u = i) =

∞∑
v+i=1

av+i exp(−a)

(v + i)!

(v + i)!

i!v!
bi(1− b)v

=
∞∑
v=0

avai exp(−a)

i!v!
bi(1− b)v

=
1

i!
aibi exp(−a)

∞∑
v=0

av

v!
(1− b)v

=
1

i!
(ab)i exp(−a)

∞∑
v=0

(a(1− b))v

v!

=
1

i!
(ab)i exp(−a) exp(a(1− b))

=
1

i!
(ab)i exp(−a+ a− ab)

=
1

i!
(ab)i exp(−ab),

(S3.72)

where the fifth equation follows with the series definition of the exponential function

exp(x) :=
∞∑
n=0

xn

n!
. (S3.73)

We thus obtain

P(C≥k,u = i) =
E(Cu)P(Ku ≥ k)i exp(−E(Cu)P(Ku ≥ k))

i!

=
λiC≥k,u exp

(
−λC≥k,u

)
i!

.

(S3.74)

2

Proof of eq. (110)

The approximation of P(Xm ≥ t̃i) by P(C≥0,t̃i
≥ 1) derives from the approximation

P(C≥0,t̃i
≥ 1) = 1− exp

(
−E(Ct̃i)

)
,≈ E(Ct̃i) (S3.75)

because with eqs. (64) and (68) it then follows that

E(Ct̃i) ≈ E(χ(Et̃i)) ≈ P(Xm ≥ t̃i). (S3.76)

29



We are thus interested in showing that
1− e−x ≈ x. (S3.77)

To this end, recall that

ex :=
∞∑
i=0

xi

i!
=
x0

0!
+
x1

1!
+
∞∑
i=2

xi

i!
. (S3.78)

Neglecting the series term on the right-hand side of eq. (S3.78) thus yields the approximation

ex ≈ 1 + x (S3.79)

and hence
ex ≈ 1 + x⇔ −x ≈ 1− ex ⇔ −(−x) ≈ 1− e−x ⇔ x ≈ 1− e−x. (S3.80)

2
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