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a b s t r a c t 

Background: Spike sorting is a basic step for implantable neural interfaces. With the growing number of 

channels, the process should be computationally efficient, automatic,robust and applicable on implantable 

circuits. 

New Method: The proposed method is a combination of fully-automatic offline and online processes. It 

introduces a novel method for automatically determining a data-aware spike detection threshold, compu- 

tationally efficient spike feature extraction, automatic optimal cluster number evaluation and verification 

coupled with Self-Organizing Maps to accurately determine cluster centroids. The system has the ability 

of unsupervised online operation after initial fully-automatic offline training. The prime focus of this pa- 

per is to fully-automate the complete spike detection and sorting pipeline, while keeping the accuracy 

high. 

Results: The proposed system is simulated on two well-known datasets. The automatic threshold im- 

proves detection accuracies significantly( > 15%) as compared to the most common detector. The system 

is able to effectively handle background multi-unit activity with improved performance. 

Comparison: Most of the existing methods are not fully-automatic; they require supervision and expert 

intervention at various stages of the pipeline. Secondly, existing works focus on foreground neural ac- 

tivity. Recent research has highlighted importance of background multi-unit activity, and this work is 

amongst the first effort s that proposes and verifies an automatic methodology to effectively handle them 

as well. 

Conclusion: This paper proposes a fully-automatic, computationally efficient system for spike sorting for 

both single-unit and multi-unit spikes. Although the scope of this work is design and verification through 

computer simulations, the system has been designed to be easily transferable into an integrated hardware 

form. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

As we enter a new era of technological progress, the upcoming

ultimodal intracranial recording systems offer high temporal and

patial resolution which is necessary for real time practical brain

achine interfaces such as implantable neuro-prosthetics [1,2] . In

 general neural acquisition and processing system, a multichannel

nalog front-end is used to acquire data, essentially in the form

f spikes embedded in the background noise. These spikes are a

esult of the electrical activity of neurons communicating amongst
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ach other and can be considered to be an electrical manifestation

f cognitive processes taking place inside the brain. Ensembles of

eurons work in cohesion with each other to perform meaningful

unctions and these require thousands of electrodes to record their

ctivity, resulting in the need of automatic handling of parameters

nd data obtained through these electrodes. In most practical

pplications, the neuronal spikes need to be separated from the

ackground noise and then classified on the basis of their source

eurons by a process called Spike Sorting. It is the process of asso-

iating neuronal action potentials to corresponding source neurons

y separating neural recordings into multiple spikes trains based

n specific distinguishing features. The general flow of a spike

orting system consists of detection of neural spikes, extraction of

https://doi.org/10.1016/j.cmpb.2019.104986
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Fig. 1. Fundamental steps of spike sorting. 
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their distinguishing features and classification of these detected

spikes on the basis of these features [3] as shown in Fig. 1 

Most applications involving spike sorting such as implantable

neuro-prostheses need data from multiple channels at high sam-

pling rates for the processing to be done in real-time. However,

it is not only infeasible, but even impossible in some cases to

transmit the entire acquired data wirelessly for offline processing

due to various constraints and trade-offs [4] . This gives rise to the

need for on-chip spike sorting solutions that allow data transmis-

sion only when a spike is detected, thus, considerably reducing the

transmission bandwidth and power consumption [5] . 

The characteristics of data being acquired from any of the mul-

tiple electrodes in an implanted array may vary considerably under

different conditions from time to time. So the neural scientist may

need to monitor channels and make adjustments accordingly for

each channel and this may require a considerable amount of time

and effort when the system extends to hundreds of channels [5–7] ,

and this gives rise to an increased risk of human error as these

regular manual interventions can cause error rates of upto 20% [8] .

Moreover, it is not feasible for real time practical systems to be

monitored and adjusted every time before and during operation.

This increases the importance of unsupervised systems which can

eliminate the need for manual technical supervision by performing

accurately under varying conditions. The basic parameters that are

usually required to be calculated automatically for real time pro-

cessing include: recognition of presence of spike train, transform

related parameters for spike detection, spike detection threshold,

feature extraction parameters/templates, number of clusters and

cluster centroids for accurate classification. 

Multi-unit activity is also commonly found in intracranial

recordings and represents the activity of several distant neurons

whose spikes can be detected but are generally not large enough

to be clustered or separated because of the difference in their spike

shapes being masked by the background noise [9] . Most spike sort-

ing architectures do not specifically handle multi-unit activity. New

research indicates that handling multi-unit spikes is very impor-

tant as they play a major role in spike sorting applications such

as seizure prediction [10] . They have also been shown to be very

informative in deciphering the brain’s complex time-varying re-

sponse to stimuli or to clinical insults [11] , the analysis of the

visual cortex [12] and the scrutiny of motor decision tasks [13] .

Moreover, a latest study also shows their efficacy in real time limb

state estimation from Dorsal Root Ganglion recordings [14] . 

In this paper, we propose a computationally efficient auto-

matic spike detection and sorting system, designed to effectively

handle multi-unit activity alongwith the single-unit activity, with

some added variations provided alongside for applications cen-

tered solely on multi-unit activity. We have also compared tech-

niques to determine the optimal number of clusters and concluded

that the Gap statistic provides an ideal estimate of this number. A

novel cluster verification block is proposed to identify clusters be-

longing to the same source neurons, thus, identifying and merg-

ing clusters that might have split during feature extraction. For

the reduction of computational complexity, which has direct im-
act on area and power requirements for a chip, an offline, online

o-design has been proposed in which optimal detection threshold

nd cluster centroids are initially calculated off-chip using auto-

atic optimal threshold algorithm and Self Organizing Maps (SOM)

espectively, and are thereafter transferred onto the chip for fur-

her classification. This system has the ability to work either in

ompletely offline mode or online mode, depending on whether

he user wants to analyze signals offline or sort them in real-

ime with the online - offline cooperative nature of the design. Al-

hough the scope of this work is design and verification of the pro-

osed system using off-line computer simulations on well known

atasets, the system has been designed considering factors such

s computational complexity, robustness, breakdown detection and

emoving the need for human supervision. These factors are of

rime importance to the spike sorting problem and its hardware

mplementability. In summary, the contributions of this paper are: 

1. A novel methodology to determine the presence of a valid

spike train on the electrodes and act accordingly. 

2. A novel automatic spike detection threshold algorithm that

is robust and can adapt to the signal. 

3. Demonstration that higher order energy operators perform

much better in the detection of multi-unit activity. 

4. A computationally efficient feature extraction methodology

that can effectively handle multi-unit activity. 

5. A computationally efficient, fully-automatic spike sorting

methodology designed for future hardware implementation. 

Some issues that have not been addressed within the scope of

his paper include: 

1. Overlapping spikes. 

2. Spatial information between electrodes of a multi-channel

array. 

3. We verify the algorithm using computer simulations on re-

alistic datasets. An ASIC implementation and in-vivo testing

is not been included in the scope of this work. 

4. This work does not handle neurons that are unseen during

the training phase and become active after deployment. 

. Related works 

As the importance of spike sorting has increased significantly in

ecent times due to its widespread applications ranging from de-

oding the working of human brain for neuroscientific studies to

laying a part in understanding and solving neuropsychiatric disor-

ers by providing effective close-loop feedback for neural interface

ystems [15,16] , more efforts are being undertaken to make this

rocess unsupervised and fully automatic in real-time. Unsuper-

ised spike sorting algorithms have been described in [17,18] which

eal with large scale, high density microelectrode arrays and can

ort a large amount of single-unit events in a short time while

7] provides a fully automatic spike sorting algorithm and a cor-

esponding software package. These algorithms provide good spike

orting accuracies, yet they make use of computationally expen-

ive dimensionality reduction techniques like PCA and Independent

omponent Analysis(ICA), which reduces their application only to

ffline analysis of data and makes them unfeasible to be used

n implantable circuits. Keshtkaran and Yang [19] also presents a

ethod that uses discriminative subspace learning to extract most

iscriminative features and then uses automatic detection of num-

er of clusters for further clustering, but this method may again

ot be suitable for real time, implantable circuits due to its high

omputational complexity. A computationally efficient, unsuper-

ised spike sorting algorithm is presented in [20] , which highlights

he importance of unsupervised, real-time spike sorting. 
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Moving onto the detailed dissection of parts of spike sorting,

he first step in this process is spike identification. Many spike de-

ection architectures have been reported in [21] , but none of them

xplicitly handle electrodes which fail to capture any spike trains.

e present a generic spike identification system which deals with

uch cases and identifies the absence or presence of valid spike

rains, thus pinpointing the broken channels and pausing compu-

ation in case of non-existence of spike trains, so that the signals

rom these channels are not processed further. This can save valu-

ble time and will help reducing the power consumption of future

n-chip systems significantly, since they no longer have to process

hannels emitting pure noise. 

After it has been successfully asserted that valid spikes are

resent in the data, the next step is to separate these spikes

rom noise through the process of spike detection. The accuracy

f spike detection significantly influences performance of succeed-

ng steps. The simplest technique used for spike detection is ab-

olute thresholding in which spikes are detected if recorded real-

ime data samples cross a certain threshold. This technique does

ot perform well for low SNR data [22] or data that contains

ulti-unit spike trains. Wavelets have also been used for unsuper-

ised spike detection [23] and have shown good accuracies even

t low SNR levels [24] . However, algorithms involving wavelets are

ot only computationally extensive but also depend heavily on the

hoice of mother wavelet [22] . Similarly, many other spike detec-

ion techniques like cepstrum of bispectrum [22] , morphological

lters [25] and template based detection using normalized corre-

ation [26] also work well at low SNR but are computationally ex-

ensive and are not viable for on-chip implementation. The Non-

inear energy Operator (NEO) has also been used widely in spike

etection due to its instantaneous nature and low computational

esource demand [27] . Gibson et al. [21] evaluates the performance

f Stationary Wavelet Transform (SWT) and NEO-operator algo-

ithm for spike detection by using ROC curves and shows NEO

o outperform SWT at both low and high SNR’s by being more

oise robust and simple. However, the empirical threshold calcu-

ation techniques used in spike detection systems currently deliver

uboptimal detection thresholds which limit detection accuracy es-

ecially when multi-unit activity is present. In some methods, the

pike detection and sorting are entwined together to be completed

n a single step [28] without an explicitly independent detection

odule. 

After the detection of spikes from the recorded data, the next

tep is the extraction of features from these spikes. Over the years,

 lot of research has been put into the selection of features for

eural spike sorting. Features such as principal components and

avelet coefficients have been extensively used for sorting but the

mplementation of these features requires considerable resources

nd is not ideal for implantable chip systems. Zero Crossing Fea-

ures (ZCF) [29] have been shown to give comparable performance

o features like principal components, First Second Derivative Ex-

remas (FSDE) and its variants FSDE2, FSDE3 and FSDE4 [30] , with

n added advantage of considerably less computational demand

nd simpler hardware implementation. When dealing with multi-

nit intracranial data, there is a need for features which are able to

ppropriately separate multi-unit spikes from single units without

dding to the computational expense. Keeping these constraints in

iew, an additional feature called NEO-Sum has been proposed in

his paper for handling multi-unit spikes. The two ZCF features

ombined with the additional NEO-Sum feature gives us three dis-

inct features which can then be used for classification. 

Nearest-Neighbor and K-means are computationally the sim-

lest classifiers available but it has been shown that they do not

ive optimal performance especially for medium/low SNR and high

oise variance. Self-Organizing Maps (SOM) have been shown to

utperform classification techniques such as Mahalanobis distance,
CA, Fuzzy C-Means and Cosine similarity etc. [31] by delivering

he best accuracy-complexity trade-off, along-with demonstrating

 stable performance over varying SNRs. An overview of some of

he algorithms and their associated hardware costs is presented in

31] . 

. Simulated datasets 

The first dataset consists of neural spikes recorded from live ex-

eriments in conjunction with a neural signal simulator to produce

ignals that mimic invasive intracranial electrode data. A detailed

escription of experimental procedures employed to collect neu-

al data are given in [32] . A total of 10 different spike templates

ere used to mimic 10 separate channels in this data, each chan-

el further consisting of three spike classes. Fig 4 shows the spike

emplates for different channels. The generated recordings did not

ontain any overlapping spikes and were generated for different

NR values with SNRs of 5 dB, 7 dB, 10 dB, 12 dB, 15 dB and 18 dB,

here each individual SNR dataset further made up of 10 chan-

els, in order to give a comprehensive picture of performance of

lgorithms. 

The second dataset was obtained from the University of Leices-

er Neuro-Engineering Lab [9] . This dataset consists of simulated

xtracellular recordings which contain a high proportion of real-

stic multi-unit spikes (20 Hz firing rate) in addition to less fre-

uently occurring single unit spikes (firing rate between 0.5 and

 Hz). These simulations were generated using 594 different aver-

ged spike shapes taken from real recordings in monkey neocortex

nd basal ganglia. The multi-unit spikes are generally created by a

ombination of neurons occurring about 100–150μm from the elec-

rode tip and were simulated in this dataset by combining the 594

pike shapes with their amplitude uniformly distributed between

.5 and 1.5 times the scaled value of average standard deviation

f background noise. A detailed explanation of these simulations is

iven in [9] and the three spike classes from a sample recording

rom the collection are shown in Fig 3 , which clearly shows two

lasses of less frequently occurring single unit spikes of high am-

litude(red and green) and one class of multi-unit low amplitude

pikes(blue). 

. Evaluation metrics 

The spike detection accuracy (DA) has been calculated using the

ormula: 

A = 

T DS 

MS + F A + T DS 
∗ 100 (1) 

here TDS is the number of truly detected spikes, FA is the num-

er of false alarms and MS is the number of missed spikes. 

.1. Truly Detected Spikes (TDS) 

The TDS represents the number of detected spikes present in

he simulated recordings which correspond to actual spikes (as de-

ned by the provided labels). 

.2. False Alarms (FA) 

Each FA is the noise which was mistaken to be a spike. 

.3. Missed Spikes (MS) 

MS represents the number of actual spikes that were not de-

ected. 
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Fig. 2. Design of the system proposed in this paper, a combination of off-line and 

on-line processes. 

Fig. 3. Templates (with normalized spike amplitudes) and firing rates of three neu- 

rons present in a realistic simulation. 
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Fig. 4. Templates for various spike classes present in different channels. 
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The classification accuracy (CA) has been calculated using

Eq. (2) as: 

A = 

T CS 

T C S + MC S 
∗ 100 (2)

where TCS is the number of truly classified spikes and MCS is the

number of mis-classified spikes. 

5. Methodology 

The proposed system is a co-design of off-line training and on-

line operation. Fig. 2 shows an overview of the proposed automatic

spike sorting system with clear indication of the coordination be-

tween on-chip and off-chip processes. In the proposed system, a

certain amount of raw neural data will be initially transmitted off-

chip for system training. The spike presence block ( Section 5.1 ) will

process the data and detect the existence of a spike train. This

block will trigger operation of each channel so that processing is

halted in the event of a malfunction. Subsequently for spike detec-

tion, the optimal detection threshold is determined using a gradi-

ent based technique ( Section 5.2 ). ZCF and NEO-sum features are
hen extracted from the detected spikes and these features are fur-

her utilized in classification. The number of clusters, determined

sing the Gap statistic ( Section 5.4 ) are used in Self-Organizing

aps (SOM), a type of neural network which are applied on the

xtracted features to provide cluster centroids. A cluster verifica-

ion block ( Section 5.5 ) identifies the different clusters belonging

o the same neural source. The optimal detection threshold and

luster centroids will now be transmitted onto the chip for further

rocessing. 

.1. Valid spike presence algorithm 

The presence or absence of a spike train in a data stream is a

roblem that has not been a focus of much research yet. Before

he system starts the actual spike detection and sorting process, it

s important to validate the existence of a spike train at a channel

ecause sometimes the farther electrodes might not capture any

iable neuronal activity. Moreover, the electrodes may malfunc-

ion/break or get damaged, resulting in no detection of any valid

euronal activity on that channel. In such a case, the processing

or that channel is halted using the spike presence system and this

ystem can thus also serve as an indicator to the neural scientist

bout potential system problems. In case of electrode drifts, where

he electrodes are not damaged, but shifted during the operation,

 viable signal is still available and function will continue. Adjust-

ent of clusters for electrode drifts can be made using the Moving

luster K-Means classifier in which the cluster centroid after each

lassification is updated using a moving cumulative average of the

revious 32 samples [31] . 

The proposed spike presence algorithm is to be applied on the

aw neural data initially transmitted off-chip and is based on the

on-Linear Energy Operator defined in Eq. (3) . The NEO filter out-

ut is a high-SNR, non-linear mapping of the spike train and is

sed commonly for spike detection. The various steps of the spike

dentification algorithm are as follows: 

1. Initially, apply the NEO filter to a 5-second window of the

raw neural data x[n]. 

NEO (x [ n ]) = x [ n ] 2 − x [ n − 1] x [ n + 1] (3)

2. Sweep the threshold from zero to the maximum NEO value

obtained, keeping the step size small. Store the number of

detection’s in a vector d [ n ], in which each entry corresponds

to a threshold value from the threshold vector t [ n ]. 

3. Compute the first and second gradient of this vector. 

4. After the maximum first gradient, If the first zero crossing

of the second gradient of the number of detection’s (s[n])
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Fig. 5. (a) The number of detection’s for a channel without any valid spike train. 

Note that once the value of second gradient touches zero, it remains zero with in- 

creasing threshold (b) Graphs for a channel with a valid spike train. Note that the 

second gradient does not remain consistently zero as the threshold increases. 
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occurs at a very small number of detection’s, it indicates the

absence of a valid spike train. 

s [ n ] = 0 ⇒ d[ n ] ≤ ε (4)

where ε represents the detection of a very few small num-

ber of spikes e.g. 15, which is an insignificant number in a

5-second data. Fig. 5 (a) shows a case where a valid spike

train does not exist, and the second gradient zero crossing

corresponds to almost zero defections. Fig. 5 (b) shows a case

where a valid spike train exists, and there are a significant

number of detection’s at the first zero crossing of the second

gradient. 

5. In case a valid spike train is absent, an OFF signal is sent

on-chip while the algorithm proceeds to work on the next

5-seconds of the neural data recording. 

The algorithm operates on the principle that the number of de-

ections is high when the threshold is low. This is because noise is

lso detected along with the spikes. As the threshold increases, the

etections start reducing rapidly. A period of slowdown and then

gain an increase in the rate of reduction of number of detections

ndicates the presence of one or more spike trains, because valid
pike trains can be detected accurately across a suitable range of

hresholds without any massive reduction in number of detections.

inally, for very high threshold values the number of detections

rops to zero. First gradient of this curve shows the rate of change

n the detections w.r.t. threshold. A deviation in the first gradient

ignifies the presence of a valid spike train, as it corresponds to the

ortion of further decrease in number of detections after the pe-

iod of sustained detections, as shown in Fig. 5 (b). To identify the

ocation of this peak the second gradient is required. The number

f detections at this point will be quite significantly greater than

ero and will correspond to the number of valid detected spikes.

n the contrary, in cases when no spike train is present, once the

econd gradient goes to zero, it remains zero for all higher values

f threshold as seen in Fig. 5 (a). Instead of keeping ε zero, we give

t a very small value to cater for some ambiguities such as a small

umber of false alarms. In our study, empirical analysis suggests

hat for a 5-second data segment, a value of ε equal to 15 suffices

he objective. 

.2. Spike detection 

Most of the contemporary on-chip spike detection architectures

mploy energy operators for detection. Discrete Energy Operators

easure the cross energy between a signal and its derivatives [33] ,

ith the general k th order discrete energy operator defined as: 

k (x [ n ]) = x [ n ] x [ n + k − 2] − x [ n − 1] x [ n + k − 1] , (5) 

k = 1 , 2 , 3 , . . . 

For k = 2, the Discrete Energy Operator transforms into the

on-Linear Energy Operator (NEO) in (3) , which is the most widely

sed energy operator for low complexity spike detection modeled

or circuits. 

The NEO filter, when applied to a signal, enhances its high-

nergy, high-frequency parts which usually correspond to neural

pikes. It is widely used for on-chip neural spike detection due

o its instantaneous nature and low computational demand. Fig. 6

hows the application of the NEO filter to a spike train. It can

e seen that the NEO filter enhances the spike regions owing to

heir high energy and frequency. A threshold is then applied to

his NEO filter output to detect neural spikes (shown as a green

ine in Fig. 6 (a)). Traditionally, this threshold is obtained by taking

he scaled mean of the NEO output [33] and is given by Eq. (6) as:

 hr = C 
1 

N 

N ∑ 

n =1 

NEO [ n ] (6)

The calculation of the optimal value of C is usually a huge chal-

enge because this value varies from data to data and thus, it needs

o be calculated experimentally with trial and error method [34] .

herefore, instead of using this traditional method of threshold cal-

ulation (referred to as ‘normal threshold’ in rest of the paper),

e have proposed a new optimal threshold calculation technique

hat is data independent and unsupervised, without requiring any

round truth because the ground truth is usually not available for

eal-time systems. The optimal threshold is calculated off-line and

ust the value of threshold is to be sent on-chip to be further ap-

lied on the NEO-transformed signal. This algorithm works as fol-

ows: 

1. Raw unfiltered data is sent off-chip for training. The training

data is expected to be representative of the actual expected

signal, thus it must contain spikes from all the neurons in

the electrode’s vicinity. 

2. Apply NEO filter to this data. 

3. Sweep the threshold starting from zero to max(NEO) and

record the number of detected spikes for each threshold
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Fig. 6. (a) Application of NEO filter and consequent threshold on a neural signal (b) 

First Gradient of Number of Detections (c) Result after applying Second Gradient, 

clearly showing a zero crossing corresponding to optimal threshold (d) Normalized 

Comparison of number of detections and detection accuracy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Detection accuracy in presence of multi-unit spikes for different k . 

k 

Detection accuracy (%) 

Sim_1 Sim_2 Sim_3 Sim_4 Sim_5 Mean 

k = 2 (NEO) 41.36 54.86 54.26 54.56 36.6 48.33 

k = 3 (ADEV) 46.88 58.36 58.68 58.69 41.55 52.88 

k = 4 (DEAO) 51.49 63.73 63.73 63.53 48.6 58.22 

k = 5 53.66 64.94 66.48 66.29 51.75 60.62 

k = 6 52.89 64.33 64.69 65.63 50.83 59.67 

k = 7 49.92 62.02 62 62.19 48.1 56.85 

Table 2 

Percentage of multi-unit and single-unit activity in the realistic 

multi-unit data-set. 

Simulation 

Percentage of spikes 

Multi-unit Single-unit 1 Single-unit 2 

simulation_1 90.23 5.217 4.55 

simulation_2 67.08 16.46 16.46 

simulation_3 66.86 17.20 15.93 

simulation_4 67.11 15.94 16.94 

simulation_5 94.93 2.66 2.41 
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value. These number of detections are represented by d [ n ]

while t [ n ] represents the corresponding threshold, where n

is the threshold index. The first gradient of the number of

detections, f [ n ], is then computed with respect to the thresh-

old and is shown in Fig. 6 (b) as 

f [ n ] = d[ n + 1] − d[ n ] (7)

4. Locate the threshold index corresponding to the maximum

first gradient, as given in Fig. 6 (b). It will be 

k = argmax ( f [ n ]) (8)

5. Compute s [ n ], the second gradient of the number of detec-

tions with respect to the threshold, where 

s [ n ] = f [ n + 1] − f [ n ] (9)

6. Starting from the index of maximum first gradient k , locate

the index m where the second gradient becomes zero or

changes sign. The stopping condition is represented as 

s [ m ] ∗ s [ m − 1] ≤ 0 & m ≥ k (10)

7. The optimal threshold is the threshold corresponding to this

index m , as evident from Fig. 6 (c) and can be confirmed

from Fig. 6 (d) as well. 

optimal threshold = t[ m ] (11)

The optimal threshold value is now to be transmitted onto the

chip for further spike detection. Fig. 6 (d) shows a normalized num-

ber of detections vs threshold curve. The curves have been nor-

malized to signify the position of the optimal threshold. It can be

seen that as the threshold increases, there comes a period during

which the number of detected spikes does not vary significantly

with varying threshold. During this period, the signal noise has
ust been overcome while the threshold value is still less than the

eaks of neuronal spikes and thus the optimal detection thresh-

ld lies here. This is the same point at which the value of second

radient attains a zero crossing ( Fig. 6 (c)). 

.2.1. Multi-unit activity based detection 

It has been observed that higher order energy operators show

nhanced performance compared to NEO based spike detection

hen it comes to multi-unit activity detection. If we use a value

f k greater than 2 in Eq. (5) , we get higher order discrete energy

perators. For k = 3, it gives us the Asymmetric Discrete Energy

elocity Operator (ADEV) defined in Eq. (12) as 

DEV (x [ n ]) = x [ n ] x [ n + 1] − x [ n − 1] x [ n + 2] (12)

For k = 4, we get the Discrete Energy Acceleration Operator

DEAO) as defined in Eq. (13) 

EAO (x [ n ]) = x [ n ] x [ n + 2] − x [ n − 1] x [ n + 3] (13)

s we increase the value of k further, it is observed that the detec-

ion accuracy keeps on increasing up to k = 5, after which it starts

ecreasing as shown in Table 1 . The 5th-order discrete energy op-

rator is expressed as 

5 [ n ] = x [ n ] x [ n + 3] − x [ n − 1] x [ n + 4] (14)

It is evident from Table 1 that, for a sampling rate of 25Ksps,

s the value of k is increased beyond 5, the detection accuracy

tarts decreasing. Thus, k = 5 can be used as an optimal value for

ure multi-unit detection’s at this sampling rate. At higher sam-

ling rates, the energy will be distributed across a higher number

f samples and we would require operators with k > 5 to achieve

ptimal performance. The main idea demonstrated in this section

s that higher order energy operators are better for higher contrast

etween noise and multi-unit activity, the exact quantitative anal-

sis of the transitions for sampling rates is not within the scope of

his paper. 

It is important to state that the realistic multi-unit data-set has

 very high proportion of low SNR multi-unit spikes, as stated

n Table 2 . The multi-unit spikes are formed by super-position of

ingle-unit activity and thus have a very low energy profile which

akes it difficult to separate them from noise, thus resulting in a

igh false alarm rate. It can be seen in Table 3 that higher order

perators have a better ability to differentiate between the energy

rofile of multi-unit activity and noise, reducing the false alarm
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Table 3 

Comparison of detection performance for the multi-unit data-set. 

Detection percentages averaged over five realistic simulations 

Operator Multi-unit Single-unit False alarms 

k = 2 (NEO) 39.576 100 18.392 

k = 5 56.334 100 12.96 

Table 4 

Comparison of detection performance for three chan- 

nels of the single-unit data-set. 

Operator 

Detection accuracy at different SNR 

5 dB 7 dB 10 dB 

k = 2 (NEO) 97.83 100 100 

k = 5 95.44 99.2 100 
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Fig. 7. (a) A graphical explanation of ZCF (b) Results after using only ZCF as features 

(c) Results after using a combination of ZCF and NEO-Sum as features. 
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ate and improving detection of multi-unit spikes. The single unit

ctivity has a much higher SNR compared to the noise and multi-

nit activity thus it is relatively easy to detect all the single-unit

pikes using both k = 2 and k = 5, as shown in Table 3 . How-

ver, if the data-set consists solely of single unit activity or if the

ulti-unit activity is not required for further analysis, higher order

nergy operators might be detrimental to performance, as shown

n Table 4 . Higher order energy operators are only recommended

hen multi-unit activity is of central importance to the applica-

ion, as in [10–14] . 

For rest of the paper, we will use a value of k = 2, which is the

ost common and widely used energy operator, so the results can

e generalized for both single and multi-unit spikes. 

.3. Feature extraction 

After a spike has been detected, it is then sent to the feature

xtraction block. Zero crossing features are computationally very

fficient and have been shown to give comparable performance to

rincipal components [29] . This makes ZCF ideal for implantable

ntegrated brain circuits. The two ZCF features are computed in ac-

ordance with Eq. (15) : 

C1 = 

Z−1 ∑ 

n =0 

x [ n ] & ZC2 = 

K−1 ∑ 

n = Z 
x [ n ] (15)

here Z is the first zero crossing index and K is the length of the

etected spike. The underlying assumption behind Zero Crossing

eatures is that every spike has a different energy profile before

nd after the zero crossing and this profile depends on the neuron

enerating that spike, as shown in the graphical explanation of ZCF

n Fig. 7 (a). 

Moreover, multi-unit spikes usually have low SNR and high

ariance thus, giving rise to variant clusters that merge with sin-

le unit clusters and make classification very difficult. Therefore,

n order to separate multi-unit activity while keeping in view the

onstraint of computational complexity of features, we have intro-

uced a third feature called NEO-Sum. This third feature makes

se of the previously computed NEO-coefficients from the detec-

ion block to separate multi-unit activity in the feature extraction

tep. 

eo − Sum = 

N ∑ 

k =0 

NEO [ n ] (16)

here N is the length of the detected spike and NEO [ n ] is the out-

ut of the NEO filter applied on this spike. The NEO-Sum feature

as been introduced keeping in view the lower energy-frequency

rofiles of multi-unit spikes as compared to single-unit spikes.

ig. 7 (b) shows ZCF applied on a recording containing multi-unit
ctivity. It can be seen that due to the variant nature of the multi-

nit spikes, the multi-unit cluster (red) merges with both the sin-

le unit clusters (black and green) making it difficult to separate

hem. When the third NEO-Sum feature is added, the multi-unit

pikes are separated from the single units owing to a difference in

nergy-frequency profiles as shown in Fig. 7 (b). 

.4. Cluster evaluation 

To accurately classify spikes according to their corresponding

euronal sources, we use a combination of K-means and Self Or-

anizing Maps (SOM). Beforehand, the number of clusters is eval-

ated using a cluster evaluation criteria using one of the cluster

valuation techniques given below: 

1. Calinski Harabasz 

2. Davies Bouldin 

3. Gap Statistic 

4. Silhouette 

Now the task is to select the best cluster evaluation technique

eeping in view our system design. This is done by comparing the

rrors in the number of clusters given by each technique as shown

n Table 5 . It is to be noted that the ‘error’ described in the table is

he difference between the number of clusters that the evaluation

echnique predicts and the actual number of clusters i.e. 3 as given

n the ground truth. The results seen in Table 5 are from all the

hannels with data-sets of varying SNR. 

From Table 5 , it is preferred to choose a technique that gives

 higher number of clusters than the actual number of clusters

s the extra clusters can be merged accordingly using the suc-

eeding cluster verification block. However, if the initial prediction

f clusters is even slightly less than the actual, separating these

erged clusters will be an impossible task later on. Whereas, even
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Table 5 

Comparison of various cluster evaluation techniques. 

Difference b/w calculated and actual no. of clusters [Calculated Error] 

SNR Met Ch1 Ch2 Ch3 Ch4 Ch5 Ch6 Ch7 Ch8 Ch9 Ch10 

5 dB GAP 1 0 0 0 1 2 −1 1 0 0 

Cal. 0 −1 −1 0 0 0 −1 −1 −2 0 

Dav. −1 −2 −1 −1 −1 0 −1 −1 −3 0 

Silh. −1 −2 −1 −1 0 0 −1 −1 −2 0 

7 dB GAP 1 1 0 0 1 1 2 3 1 0 

Cal. 1 1 −1 0 1 1 −1 4 0 0 

Dav. 1 1 −1 −1 1 1 −1 1 −1 −1 

Silh. 1 1 −1 −1 1 1 −1 1 0 0 

12 dB GAP 2 2 0 0 1 1 3 3 3 0 

Cal. 2 2 0 0 1 1 1 4 1 0 

Dav. 1 1 −1 0 1 1 −1 2 −1 0 

Silh. 1 1 −1 0 1 1 −1 2 0 0 

15 dB GAP 2 2 0 0 2 1 3 4 4 0 

Cal. 2 2 0 0 1 1 1 4 4 0 

Dav. 1 1 −1 0 1 1 −1 2 −1 0 

Silh. 1 1 −1 1 1 1 1 2 1 0 
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significantly more number of clusters can be merged later on using

the technique proposed in Section 5.5 . Keeping this in mind, Gap

was selected as the best choice for cluster evaluation, as this tech-

nique has a tendency of almost never delivering lower number of

clusters then the actual. Delivering a higher number is not a prob-

lem as these clusters can be merged in post-processing in the next

step. All the other techniques have a tendency to deliver a lower

number than the actual number of clusters (negative error), thus

making separation impossible even in post processing. Moreover,

Gap gave better results as compared to all the other techniques

even at higher SNRs. 

The number of clusters and feature space are then input to the

Self Organizing Map classifier. Self-Organizing Maps are a type of

neural network that relies on competitive learning. Weight vectors

corresponding to number of clusters returned by GAP are initial-

ized randomly. When a training example is fed into the network,

its euclidean distance with all the weight vectors is computed. The

neuron which has a weight vector closest to the input is adjusted

towards the input vector. A typical update rule is formulated as 

 v (s + 1) = W v (s ) + θ (u, v , s ) · α(s ) · (D (t) − W v (s )) (17)

where s is the current iteration, t is the index of the input data

vector, D ( t ) is the input data vector, v is the index of the centroid

neuron, W v is the weight associated with the neuron v, α( s ) is the

learning rate and θ ( u, v, s ) is the neighbourhood function. A de-

tailed description is provided in [35] . 

The SOM classifies the training data and delivers us the cluster

centroids, which along with the number of clusters are transferred

on-chip for further classification. These cluster centroids are then

further updated online using K-means, as the classification process

progresses. Given a feature vector, the online K-means algorithm

assigns a spike to the nearest centroid. Furthermore, to cater to

the inconvenience caused by electrode drift, we can use a compu-

tationally efficient Moving Cluster K-Means (MCK) classifier [31] , in

which the cluster centroid after each classification is updated using

a cumulative moving average of the previous 32 samples, thus, en-

abling the classifier to adapt to non-stationary clusters. Suppose at

iteration stamp i + 1 , the feature data vector D t (i + 1) from a spike

is assigned to the cluster v with centroid μv ( i ). The MCK moving

average update, based on the previous 32 samples will be: 

μv (s + 1) = 

D t (i + 1) + 31 · μv (i ) 

32 

(18)

Our system also includes a cluster verification block so that if

the number of clusters delivered by the evaluation technique and
lassified by SOM is more than the actual number of spike sources,

t will merge clusters to deliver optimal results, as elaborated in

he next section. 

.5. Cluster verification 

The ZCF extraction block detects the first zero crossing after a

pike has been detected and uses it for feature extraction. Some

eural spikes found in actual recordings have an uncanny shape

nd they show an initial rise and fall just before the major spike

hape occurs. The initial rise is relatively small and sometimes the

etection threshold detects these as a part of the spike while at

ther times these are not detected in the spike signal. This means

hat on some occasions, the spike is detected four to five samples

arlier because of these rise and falls. If these abnormalities are

ignificant enough to be occasionally considered as a part of the

pike, the existence of a zero-crossing in-between these initial rise

nd falls is detected by the ZCF block, resulting in a variation in

he values of Zero-Crossing features for the same cluster. The con-

equence of this is the splitting of the cluster belonging to a spe-

ific spike shape into sub clusters. This greatly influences the pro-

ess of classification and causes a significant drop in classification

ccuracy. 

We have introduced a correlation based cluster verification

lock to cater for this problem. The cluster verification algorithm

s stated below: 

1. The feature space is clustered using Self-Organizing Maps

(SOM) based on the number of clusters delivered by the

cluster evaluation block. 

2. Spike templates are extracted for each different class cluster.

3. If the normalized linear correlation between any spike tem-

plates is greater than a pre-selected threshold, the clusters

are assumed to belong to the same neural source. 

An explanation of this cluster verification can be derived from

ig. 8 . Only the two ZCF dimensions have been shown in these

lots for better illustration. Fig. 8 (a) shows the ground truth la-

eling of the feature space. The two distinct yellow clusters belong

o the same spike class but have split up as per the explanation

rovided. When Gap was applied to this feature space, it provided

n optimal cluster number of four which was then used by the

OM Classifier. Fig. 8 (b) shows the result of SOM classifier applied

n the feature space. It can be seen that the two distinct yellow

lusters seen in Fig. 8 (a) have been classified into separate classes

n Fig. 8 (b). Fig. 8 (c) shows the extracted spike templates from the
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Fig. 8. (a) Ground truth labeling of feature space (b) Result of initial SOM classification on feature space c) Extracted cluster templates signifying high correlation between 

some clusters d) Post cluster verification and cluster merger results. 

Fig. 9. Block diagram representation of online process architecture (where the 

white blocks represent computations or control units and gray blocks represent reg- 

isters). 
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lusters shown in Fig. 8 (b). It is clearly visible that the red and

lack clusters are highly correlated. The normalized linear corre-

ation between these two clusters is 0.9622 which is above our

re-selected threshold 0.9 . Thus, the system concludes that these

wo clusters belong to the same spike class and can be merged to-

ether. Fig. 8 (d) shows this merger after cluster verification, verify-

ng that the end results approximately match the ground truth re-

ult in Fig. 8 (a). The more elaborate correlation plots are not shown

n Fig. 8 for brevity, as the overall method can be easily explained

ithout them as well. 

A conceptual block diagram depicting the operational flow of

he proposed online process is shown in Fig. 9 . The detection

hreshold, number of clusters and cluster centroids are to deter-

ined by initial offline training and then transferred onto the on-

ine processor. The detection, feature extraction and classification

s to be thereafter performed online. For simplicity, the classifi-

ation block is shown for only three spike classes but a number

f Centroid registers can be used and activated depending on the

umber of clusters determined. This diagram should serve as an

ndicator of the simplicity and computational efficiency of the pro-

osed method. Although the scope of this paper is design, analy-

is and verification of the algorithm using computer simulations,

ig. 9 may aid in future practical implementation on platforms

uch as FPGA or ASIC. 

. Experimental setup 

Our system was designed to handle both single unit and multi-

nit activity. Keeping this in view, we tested our work on two dif-

erent simulated datasets: one consisting of only single unit activ-
ty and the other consisting of a very large proportion of realistic

ulti-unit spikes. 

In the spike detection experiment, we demonstrate that our

roposed automatic threshold improves detection performance

ompared to the commonly used threshold. In the spike classifica-

ion experiment, we demonstrate the effectiveness of our proposed

eature in separation of multi-unit activity and show that our clus-

er verification technique indeed performs as expected, mitigating

he cluster splitting issue presented by ZCF features. The classifica-

ion results represent the simulation for the online classifier after

he required initial offline training. The system is fully automatic,

ith considerably low computational demand. 

. Results and discussions 

.1. Spike detection 

As explained earlier, the Non-Linear Energy Operator is widely

sed for on-chip neural spike detection due to its instanta-

eous nature and low computational demand. For determining the

hreshold by standard normal threshold functions, the ideal value

f the constant C needs to be calculated experimentally using

round truth and varies significantly from data to data. On the

ther hand, the optimal threshold algorithm we propose is auto-

atic and does not require ground truth. 

Various methods [1] use the value of C = 4 for hardware based

pike detection systems. Thus, just for comparison we will com-

are the proposed automatic threshold technique with the normal

hreshold function with the constant factor being C = 4 for both

atasets. 

For dataset 1, Fig. 10 (a) shows the average detection accuracy

esults for all channels ranging over multiple SNRs. It can be seen

hat for medium and higher SNRs, the performance of both meth-

ds is good and acceptable, but as the SNR decreases, the optimal

hreshold technique outperforms the constant threshold by a con-

iderable margin. Table 6 summaries the average detection accu-

acy over all SNRs. 

Moreover, the two threshold techniques were also applied to

he realistic dataset dominated by multi-unit activity. The nor-

al scaling factor C = 4 had been calculated empirically for specific

ingle-unit activity which generally has a much higher energy pro-

le, most of the multi-unit spikes fall below the threshold, thus it

hows poor performance. It strengthens our proposition that the

ame value of C cannot be used for different recordings, resulting

n the need of a generalized automatic threshold technique that

an adapt according to the signal. Due to the presence of a large

umber of multi-unit low SNR spikes in the data, the detections

re more sensitive and susceptible to the threshold and even small

hanges in threshold can cause drastic changes in accuracy. The

ifference between the normal and automatic threshold accuracies
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Table 6 

Mean accuracies for spike detection and classification. 

Results Methods 

Mean accuracy (%) 

Single unit datasets Single unit & embedded multi-unit activity datasets 

Spike 

Detection 

Normal 

Threshold 

77.46 9.42 

Automatic 

Threshold 

98.43 43.63 

Spike 

Classification 

Simple ZCF as 

features 

94.9 40.41 

ZCF & 

NEO_Sum as 

features 

94.908 92.62 

Fig. 10. Comparison of detection accuracies between normal and automatic thresh- 

old for (a) Single-Unit High SNR dataset (b) Multi-unit low SNR dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. Comparison of various classification techniques when applied on (a) various 

SNRs of a single-unit dataset (b) a multi-unit realistic dataset. 
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can be seen impeccably in Fig. 10 (b) and Table 6 . It can be ob-

served that there was a considerable improvement in the detec-

tion performance as compared to normal threshold but the overall

detection accuracy was still lower as compared to recordings con-

sisting solely of high SNR single units ( Fig. 10 (a)). The reason for

this is that low SNR multi-unit spikes are very difficult to detect

because of their variant nature and low energy profile. 

Most applications are usually more focused on the detection of

single-unit spikes only so multi-unit spikes can be discarded in

these cases. But if the system is to be used for applications that

specifically require the detection of multi-unit activity, it is rec-

ommended to use a detection architecture based on the 5th-order

discrete energy operator as explained in Section 5.2.1 as it gives

multi-unit detection results better than NEO operator as evident in

Table 1 as well. The efficacy of our proposed features in separation

of multi-unit activity from single unit activity is explained in the

next section. 

7.2. Spike classification 

Our proposed classification technique consists of an initial off-

line training using Self-Organizing Maps and cluster verification
lock and on-line transmission of cluster centroids and further

lassification based on those centroids using k-means. 

To study the classification results accurately, we assumed that

ll spikes had already been detected and thus used the ground

ruth spike time data. Fig. 11 (a) demonstrates the efficacy of our

lassification technique for various SNRs ranging from 5 dB to

2 dB. It can be seen that ZCF + NEO-Sum classification with clus-

er verification and simple ZCF with cluster verification give much

etter results than simple ZCF without a cluster verification block.

his is due to the fact that ZCF in some cases splits clusters to give

ultiple clusters of a single spike class. The results also show that

luster splitting reduces with a decrease in SNR as there is a rise

n classification accuracy at the low SNR of 5dB. 

Although the classification of individual single unit activity

oes not benefit much with the incorporation of the additional

EO-Sum feature, it greatly improves the separation of multi-unit

nd single unit activity as shown in Fig. 11 (b) and Table 6 . The ad-

itional feature takes advantage of the fact that multi-unit spikes
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Table 7 

Complexity comparison of spike detection operators. 

Algorithms N add N mult Comp. complexity Detection accuracy (%) 

Untransformed Input Signal & Absolute Threshold 2 - 2 82 

NEO Transformed Input Signal & Automatic Threshold 2 2 22 97.2 
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Table 8 

Complexity comparison of feature extraction algorithms. 

Algorithm N add N mult Computational complexity 

ZCF 30 0 30 

PCA2 60 60 660 

DWT 58 60 658 
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ave a lower energy profile or content than single unit spikes. Al-

hough other features may also be available to separate multi-unit

nd single unit activity, but NEO-Sum is computationally efficient

wing to the fact that NEO coefficients are already available to us

n the detection phase and we only have to compute a simple sum

o extract this feature. 

.3. Complexity comparison 

In this paper, the proposed combination of off-line & on-line

rocesses result in the implementation of only the NEO opera-

or, Zero-Crossing and Neo-Sum features and K-means on the chip

hile the threshold calculation, cluster evaluation, verification and

nitial SOM classification happen off-chip, thus, greatly reducing

he on-line complexity. The blocks that are proposed to be a part

f the on-line process consist of simple processes which should not

e an issue when transferring the proposed system into a hard-

are prototype. 

As in [21] , we define the computational complexity as: 

omplexity = N ad d itions + 10 ∗ N mul tipl ications (19)

.3.1. Spike detection 

Absolute threshold applied directly on real-time signal and

hresholding the NEO-transformed signal are the most commonly

sed low complexity methods for spike detection. Table 7 shows

n accuracy-complexity comparison of these two methods (includ-

ng complexity required for comparing threshold on-chip) without

aking into account the requirements for threshold calculation as

hey are computed off-chip. The number of additions ( N add ) and

ultiplications ( N mult ) in Table 7 are for a single sample of spike.

he detection results are for signals with a comparatively realistic

ow SNR of 5dB. 

It is evident from Table 7 that NEO with automatic threshold

rovides a very high accuracy of 97% as compared to Absolute

hreshold at a small expense of complexity. 

Many detection algorithms also employ Stationary Wavelet

ransform (SWT) for spike detection. However, the computational

omplexity of SWT goes up to approximately 450 [21] , which is

ery high as compared to that of NEO. Thus, NEO becomes an ap-

ropriate choice since it gives a high accuracy and fairly low com-

lexity. 

.3.2. Feature extraction and classification 

This paper employs ZCF with Neo-Sum and K-means as the

n-line feature extraction and classification unit respectively. Most

f the contemporary unsupervised implantable architectures use

-Sort with Euclidean Distance or l1 -norm distance as the main

lassifier because of its capability to cluster features without any

upervision. But, the main drawback of using O-Sort is that its

lassification performance rarely exceeds 70% [36] , thus reducing

ts effectiveness in practical on-chip spike sorting applications. On

he other hand, K-means gives a classification performance ex-

eeding 90% but it requires a prior knowledge of number of clus-

ers. Our proposed off-chip & on-chip combination can provide just

hat, with the off-chip system working unsupervised to determine

he number of clusters along with the cluster centroids and then
ending these to the chip for enhanced performance of the com-

lete system. Thus, the whole architecture not only works unsu-

ervised, but effectively uses off-line training and on-chip testing

or a better performance. Moreover, [36] also provides an elabo-

ate accuracy-complexity comparison of different spike sorting ar-

hitectures and its results show that ZCF with K-means is amongst

he top methods with a low computational complexity and very

igh accuracy. As shown in Table. 8 , Our proposed Zero-Crossing

nd Neo-Sum features require only 2 ∗M 

∗N additions and no mul-

iplications for their computation (where M = number of spikes,

 = samples per spike) which are low as compared to PCA, Dis-

rete Wavelet Transforms or Discrete Derivatives, making them an

ptimal choice for our system to deal with a wide variety of spikes

ncluding multi-unit activity. 

The separation of multi-unit activity from single unit activity

s very important in a lot of applications and their non-separation

an also be a cause of many problems as explained in [2] . Our pro-

osed method is efficient with regards to both accuracy and com-

utation while dealing with the classification of multi-unit spikes

s well by employing a combination of ZCF and Neo-Sum features.

e have come across no other implantable spike sorting architec-

ure that specifically deals with this multi-unit activity separation

ntil now. 

. Conclusions 

With the rise in the number of channels in neural interfaces

nd the increase in sampling rates, it is imperative to develop

ew computationally efficient spike sorting methods to reduce the

ransmission bandwidth and power consumption. Furthermore, the

ystems need to be completely unsupervised in order to remove

uman supervision, so that they can be applied to practical prob-

ems in real-time. 

We have proposed, and through the use of computer simula-

ions, verified a new spike sorting system that is computationally

fficient and completely unsupervised, modeled for future hard-

are implementation. Furthermore, it can also handle multi-unit

ctivity which is usually a part of actual recordings and can pro-

ide a unique window of opportunity to understanding the hu-

an brain, if handled appropriately. No other reported architec-

ure we came across specifically handles multi-unit activity. We

lso present a cluster verification method to mitigate some issues

ith Zero Crossing features. 

While there may be other methods which have a better quan-

itative/accuracy performance than our proposed system, we have

ffectively addressed issues such as computational complexity, re-

oval of the need for human supervision and effective handling

f multi-unit activity. These issues are of prime importance to the

pike sorting problem and practical implementation of ASIC sys-

ems that may build upon these techniques. 
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