Springe direkt zu Inhalt

Dr. Rasmus Bruckner

Rasmus Bruckner

Learning Lab

Group Leader | Researcher

Address
Habelschwerdter Allee 45
Room JK 25/218
14195 Berlin

Office hours

By arrangement

Research Interests

I develop and apply computational models of learning and decision making. The main focus of my research is on experience-driven learning in uncertain environments that require sophisticated information processing. I use behavioral and neuroimaging experiments to study the neural and cognitive processes underlying these learning abilities in humans.

Since 2024 Post-doc Uni Hamburg and Co-PI DFG Research Unit 5389
Since 2020 Post-doc FU Berlin
2015 - 2020 Dr. rer. nat. Psychology ("Summa cum laude")
Freie Universität Berlin
International Max Planck Research School LIFE
Max Planck School of Cognition
Max Planck Institute for Human Development Berlin
2012 - 2015 M.Sc. Psychology, Humboldt University Berlin
2008 - 2011  B.Sc. Psychology, Radboud University Nijmegen

In Preparation for Submission

Ganesh, P., Donner, T. H., Cichy, R. M., Schuck N. W., Finke, C., & Bruckner, R. (2024). Pupil-linked arousal encodes uncertainty-weighted prediction errors.

Satti, M. H., Wille, K., Nassar, M. R., Cichy, R. M., Schuck, N. W., Dayan, P., & Bruckner, R. (2024). Absence of systematic effects of internalizing psychopathology on learning under uncertainty.


Publications

Bruckner, R., Nassar, M. R., Li, S.-C., & Eppinger, B. (2024). Differences in learning across the lifespan emerge via resource-rational computations. Accepted for publication in Psychological Review. <Link PsyArXiv >

Ganesh, P., Cichy, R. M., Schuck N. W., Finke, C., & Bruckner, R. (2024). Adaptive integration of perceptual and reward information in an uncertain world. Accepted for publication in eLife. <Link to bioRxiv preprint>

Bruckner, R. & Nassar, M. R. (2024). Decision-making under uncertainty. Encyclopedia of the Human Brain, 2nd edition (Academic Press). <Link>

O'Leary, J. D., Bruckner, R., Autore, L., & Ryan, T. J. (2023). Natural forgetting reversibly modulates engram expression. eLife. <Link>

Koch, C., Zika, O., Bruckner, R., & Schuck, N. W. (2024). Influence of surprise on reinforcement learning in younger and older adults. PLoS Computational Biology. <Link>

Dabas, A., Bruckner, R., Schultz, H., Benoit, R. G.(2024). Learning from imagined experiences via an endogenous prediction error. bioRxiv <Link>

Satti, M. H., Wille, K., Nassar, M. R., Cichy, R. M., Schuck, N. W., Dayan, P., & Bruckner, R. (2024). Absence of systematic effects of trait anxiety on learning under uncertainty. Proceedings of the conference on Cognitive Computational Neuroscience 2024. <Link>

Yao, Y.-W., Song, K.-R., Schuck, N. W., Li, X., Fang, X.-Y., Zhang, J.-T., Heekeren, H. R., & Bruckner, R. (2023). The dorsomedial prefrontal cortex represents subjective value across effort-based and risky decision-making. NeuroImage, 279:120326. <Link>

Pupillo, F., & Bruckner, R. (2023). Signed and unsigned effects of prediction error on memory: Is it a matter of choice? Neuroscience & Biobehavioral Reviews, 153:105371. <Link>

Pupillo, F., Ortiz-Tudela, J., Bruckner, R., & Shing, Y. L. (2023). The effect of prediction error on episodic memory encoding is modulated by the outcome of the predictions. npj Science of Learning, 8(18). <PDF>

Bruckner, R., Heekeren, H. R., & Nassar, M. R. (2022). Understanding learning through uncertainty and bias. PsyArXiv. <Link>

Frömer, R., Nassar, M. R., Bruckner, R., Stürmer, B., Sommer, W., & Yeung, N. (2021). Response-based outcome predictions and confidence regulate feedback processing and learning. eLife, 10:e62825. <PDF>

Bruckner, R., Heekeren, H. R., & Ostwald, D. (2020). Belief states and categorical-choice biases determine reward-based learning under perceptual uncertainty. bioRxiv. <PDF>

Nassar, M. R., Bruckner, R., & Frank, M., J. (2019). Statistical context dictates the relationship between feedback-related EEG signals and learning. eLife, 8:e46975. <PDF>

Ostwald, D., Schneider, S., Bruckner, R., & Horvarth, L. (2019). Power, positive predictive value, and sample size calculations for random field theory-based fMRI inference. bioRxiv. <PDF>

Ostwald, D., Schneider, S., Bruckner, R., & Horvarth, L. (2019). Random field theory-based p-values: a review of the SPM implementation. arXiv. <PDF>

van den Bos, W., Bruckner, R., Nassar, M. R., Mata, R., & Eppinger, B. (2018). Computational neuroscience across the lifespan: Promises and pitfalls. Developmental Cognitive Neuroscience, 33:42–53. <PDF>

Nassar, M. R., Bruckner, R., & Eppinger, B. (2016). What do we GANE with age? [Invited peer commentary]. Behavioral and Brain Sciences, 39:e218. <Link>

Nassar, M. R., Bruckner, R., Gold, J. I., Li, S.-C., Heekeren, H. R., & Eppinger, B. (2016). Age differences in learning emerge from an insufficient representation of uncertainty in older adults. Nature Communications, 7:11609. <PDF>

Eppinger, B. & Bruckner, R. (2015). Towards a mechanistic understanding of age-related changes in learning and decision making: A neuro-computational approach. New York: Academic Press. <PDF>