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In	  search	  of	  multivariate	  data	  “patterns”	  
in	  neuroimaging	  

ì  Mul4variate	  techniques	  make	  using	  complex	  imaging	  
data	  simpler.	  
ì  Leverage	  vast	  informa4on	  to	  maximize	  our	  understanding	  

of	  phenomena	  of	  interest.	  	  

ì  MVPA:	  	  
ì  OJen	  purported	  in	  neuroimaging	  as	  a	  mul4variate	  

method,	  but	  is	  oJen	  u4lized	  as	  a	  univariate	  technique	  
(e.g.,	  linear	  discriminant	  and	  logis4c	  models	  are	  
typically	  dimensionally	  univariate).	  

ì  What	  about	  truly	  mul4variate	  (mul4dimensional)	  
models?	  



Partial	  least	  squares	  (PLS)	  

ì  Is	  a	  general	  mul4variate	  (mul4dimensional)	  sta4s4cal	  
method:	  
ì  Whereas	  MVPA	  oJen	  leverages	  mul4ple	  sources	  of	  brain	  

ac4vity	  to	  discriminate	  between	  discrete	  classes/groups/
states;	  	  

ì  PLS	  (McIntosh	  et	  al.,	  1996)	  is	  more	  general	  in	  form,	  allowing	  
researchers	  to	  find	  mul4variate,	  latent-‐level	  “paZerns”	  
linking	  brain	  data	  to	  any	  other	  variables	  of	  interest	  (classes,	  
con4nuous	  variables,	  etc.)	  in	  one	  mathema4cal	  step.	  	  	  

ì  Can	  be	  u4lized	  in	  the	  context	  of	  EEG,	  fMRI	  (block	  design,	  
event-‐related),	  structural	  MR,	  PET,	  network	  indices,	  etc.	  

	  



PLS:	  What’s	  to	  gain?	  

ì  PLS	  is	  an	  effec4ve	  way	  of	  reducing	  dimensionality	  
ì  Moves	  us	  to	  latent	  space:	  allows	  us	  to	  capture	  very	  complex	  

phenomenon	  in	  fewer	  dimensions	  than	  univariate	  =	  PARSIMONY	  
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PLS:	  Details…	  
ì  PLS	  uses	  singular	  value	  decomposi4on	  (SVD)	  to	  

decompose	  large	  matrices	  into	  orthogonal	  dimensions	  
ì  E.g.,	  linking	  ISDRT	  and	  meanRT	  to	  fMRI	  voxel	  means	  in	  

three	  different	  task	  condi4ons	  (1-‐,	  2-‐,	  3-‐back);	  n=3.	  

What does PLSC optimize?
The goal of PLSC is to find pairs of latent vectors ℓ X;ℓ and ℓ Y;ℓ with

maximal covariance and with the additional constraints that (1) the
pairs of latent vectors made from two different indices are uncor-
related and (2) the coefficients used to compute the latent variables
are normalized (see Tucker, 1958; Tenenhaus, 1998, for proofs).
Formally, we want to find

ℓ X;ℓ = Xvℓ and ℓ Y;ℓ = Yuℓ

such that cov ℓ X;ℓ; ℓ Y;ℓ

! "
∝ ℓ T

X;ℓℓ Y;ℓ = max

ð6Þ

[where cov ℓ X;ℓ; ℓ Y;ℓÞ
#

denotes the covariance between ℓ X;ℓ and ℓ Y;ℓ]
under the constraints that

ℓ T
X;ℓℓ Y;ℓ′ = 0 when ℓ ≠ ℓ′ ð7Þ

(note that ℓ T
X;ℓℓ X;ℓ′ and ℓ T

Y;ℓℓ Y;ℓ′ are not required to be null) and

uT
ℓuℓ = vTℓvℓ = 1: ð8Þ

It follows from the properties of the SVD (see, e.g., Abdi and
Williams, 2010d; de Leeuw, 2007; Greenacre, 1984; Takane, 2002)
that uℓ and vℓ are singular vectors of R. In addition, from Eqs. (3–5),
the covariance of a pair of latent variables ℓ X;ℓ and ℓ Y;ℓ is equal to the
corresponding singular value:

ℓ T
X;ℓℓ Y;ℓ = δℓ: ð9Þ

So, when ℓ=1, we have the largest possible covariance between
the pair of latent variables. When ℓ=2 we have the largest possible
covariance for the latent variables under the constraints that the latent
variables are uncorrelated with the first pair of latent variables [as
stated in Eq. (7), e.g., ℓ X;1 and ℓ Y;2 are uncorrelated], and so on for
larger values of ℓ.

Deciding which latent variables to keep

The SVD of R corresponds to a fixed effect model; therefore, the
results can only be interpreted with respect to the original data sets.
Yet, in the framework of PLSC, the goal is to extract information
common to the two sets of data (e.g., brain activity and behavioral
measures) which can generalize to the population (i.e., a random effect
model; Abdi, 2010).

To generalize the results (i.e., to create a random effect model), we
could use an inferential analytical approach such as the one defined
by Tucker (1958), but this approach makes too many parametric
assumptions to be used routinely. Instead, we use computational
approaches, such as permutation tests, to obtain p-values, which can
then be used to identify the generalizable latent variables (McIntosh
and Lobaugh, 2004; McIntosh et al., 2004). In a permutation test, a
new data set, called a permutation sample, is obtained by randomly
reordering the rows (i.e., observations) of X and leaving Y unchanged.
The PLSC model used to compute the fixed effect model is then
recomputed for the permutation sample to obtain a new matrix of
singular values. This procedure is repeated for a large number of
permutation samples, say 1000 or 10,000. The set of all the singular
values provides a sampling distribution of the singular values under
the null hypothesis and, therefore can be used as a null hypothesis
test.

When a vector of saliences is considered generalizable and is
kept for further analysis, we need to identify its elements that are
stable through resampling. In practice, the stability of an element is
evaluated by dividing it by its standard error. Specifically, if σ̂ðuiÞ

and σ̂ðviÞ denote the standard errors of ui and vi, the stability of the
ith element of u and v are obtained (respectively) as:

ui

σ̂ðuiÞ
and

vi
σ̂ðviÞ

: ð10Þ

To estimate the standard errors, we create bootstrap samples
which are obtained by sampling with replacement the observations in
X and Y (Efron and Tibshirani, 1986). A salience standard error is then
estimated as the standard error of the saliences from a large number
of these bootstrap samples (say 1,000 or 10,000). The ratios from
Eq. (10) are akin to a Z-score, therefore when they are larger than 2
the corresponding saliences are considered significantly stable. Stable
saliences determine which voxels show reliable responses to the
experimental conditions (McIntosh et al., 2004; Efron and Tibshirani,
1986) and indicate the important saliences in the brain activity net-
work (Mentis et al., 2003).

As a technical aside, one problem when using permutation or
bootstrap methods is that resampling may cause axis rotation or
reflection. Axis rotation refers to a change in the order of the latent
variables that are extracted with each permutation. Reflection refers
to a change in the sign of the saliences for each bootstrap sample. A
Procrustes rotation or a variation of multidimensional scaling, such as
DISTATIS (Abdi et al., 2005; Abdi et al., 2009a), can be used to correct
for these rotations and reflections (see McIntosh and Lobaugh, 2004,
for more details).

Although it may seem that using both permutation tests and the
bootstrap is somewhat redundant, these twomethods provide, in fact,
different information. Permutation tests indicate whether a signal can
be differentiated from noise, but do not index signal reliability which
is, by contrast, provided by the bootstrap (see McIntosh and Lobaugh,
2004, for a discussion of detection and reliability).

PLS: mini-example

In order to illustrate the various versions of PLS we have chosen a
hypothetical neuroimaging experiment that analyzes data from
participants grouped into three experimental conditions comprising
two clinical populations, Alzheimer's disease (AD) and Parkinson's
disease (PD), and an age-matched normal control group (NC). Each
participant is scanned once using PET imaging. Voxel activity values
from the PET scans are collected separately for each participant and
stored in X. The scans are coregistered to Talairach coordinates so that
voxels are in the same location for eachparticipant. In this example,we
have three participants per clinical category (hence a total of 3×3=9
participants). The PET results are:

X =
X1
X2
X3

2

4

3

5 =

2 5 6 1 9 1 7 6 2 1 7 3
4 1 5 8 8 7 2 8 6 4 8 2
5 8 7 3 7 1 7 4 5 1 4 3

3 3 7 6 1 1 10 2 2 1 7 4
2 3 8 7 1 6 9 1 8 8 1 6
1 7 3 1 1 3 1 8 1 3 9 5

9 0 7 1 8 7 4 2 3 6 2 7
8 0 6 5 9 7 4 4 2 10 3 8
7 7 4 5 7 6 7 6 5 4 8 8

2

66666666666666664

3

77777777777777775

; ð11Þ

where the columns give voxel activity and the rows are participants
AD1, AD2, AD3 (which correspond to X1) PD1, PD2, PD3 (which
correspond toX2), NC1, NC2 and NC3 (which correspond toX3). Matrix
Y (and sometimes the preprocessing of X) will differ based on the
version of PLSC (i.e., behavior, task, seed, or multi-table).
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Behavior PLSC

Behavior PLSC analyzes the relationship between the behavioral
characteristics of groups and their functional brain activity. Matrix X
contains voxel activity [Eq. (11)] and Matrix Y, in this case, contains
various demographic (e.g., age) and/or behavioral data (e.g., neuro-
psychological tests, reaction times).

For our example, (fictitious) participants underwent behavioral
testing using a memory test for word recall. The behavioral measures
were the number of words correctly recalled and the average reaction
time (in ms). The behavioral data are:

Ybehavior =
Ybehavior;1
Ybehavior;2
Ybehavior;3

2

4

3

5 =

15 600
19 520
18 545

22 426
21 404
23 411

29 326
30 309
30 303

2

66666666666666664

3

77777777777777775

; ð12Þ

where the rows are the same participants as in matrix X and the
columns are the participants’ number of words recalled and reac-
tion time scores, respectively. Note that both X and Y contain infor-
mation from the same participants and hence have the same number
of rows but are likely to have a different number of columns.

Both X and Y are centered and normalized within each condition
n (i.e., each Xn and Yn is centered and normalized independently,
and the sum of squares of a column in one condition is equal to 1,
note also then when all values are equal to their mean, they are

all normalized to zero). This normalization gives the following
matrices:

X =

−0:77 0:07 0:00 −0:59 0:71 −0:41 0:41 0:00 −0:79 −0:41 0:23 0:41
0:15 −0:74 −0:71 0:78 0:00 0:82 −0:82 0:71 0:57 0:82 0:57 −0:82
0:62 0:67 0:71 −0:20 −0:71 −0:41 0:41 −0:71 0:23 −0:41 −0:79 0:41

0:71 −0:41 0:27 0:29 0:00 −0:66 0:48 −0:31 −0:31 −0:59 0:23 −0:71
0:00 −0:41 0:53 0:51 0:00 0:75 0:33 −0:50 0:81 0:78 −0:79 0:71

−0:71 0:82 −0:80 −0:81 0:00 −0:09 −0:81 0:81 −0:50 −0:20 0:57 0:00

0:71 −0:41 0:62 −0:82 0:00 0:41 −0:41 −0:71 −0:15 −0:15 −0:51 −0:82
0:00 −0:41 0:15 0:41 0:71 0:41 −0:41 0:00 −0:62 0:77 −0:29 0:41

−0:71 0:82 −0:77 0:41 −0:71 −0:82 0:82 0:71 0:77 −0:62 0:81 0:41

2

66666666666666664

3

77777777777777775

ð13Þ

and

Ybehavior =

−0:79 0:78
0:57 −0:60
0:23 −0:17

0:00 0:78
−0:71 −0:61
0:71 −0:17

−0:82 0:79
0:41 −0:22
0:41 −0:57

2

66666666666666664

3

77777777777777775

: ð14Þ

Thematrix of correlations for each condition n is then computed as
(Fig. 4):

Rbehavior;n = YT
behavior;nXn: ð15Þ

All the condition-wise matrices of correlations are stacked one on
top of the other to form the combined matrix of correlations Rbehavior,
which is the input for the SVD. The Rbehavior matrix contains the

Fig. 4.MatrixX andmatrix Y for Behavior PLSC: The observations are arranged according toN conditions in bothmatrices and are normalizedwithin condition. Thematrix of correlations
(Rn) between each condition-wise sub-matrix (Xn and Yn) are stacked one below the other to form a combined matrix of correlations R which is then decomposed by SVD.
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PLS:	  Data	  set	  up…	  

Behavior PLSC

Behavior PLSC analyzes the relationship between the behavioral
characteristics of groups and their functional brain activity. Matrix X
contains voxel activity [Eq. (11)] and Matrix Y, in this case, contains
various demographic (e.g., age) and/or behavioral data (e.g., neuro-
psychological tests, reaction times).

For our example, (fictitious) participants underwent behavioral
testing using a memory test for word recall. The behavioral measures
were the number of words correctly recalled and the average reaction
time (in ms). The behavioral data are:

Ybehavior =
Ybehavior;1
Ybehavior;2
Ybehavior;3

2

4

3

5 =

15 600
19 520
18 545

22 426
21 404
23 411

29 326
30 309
30 303

2

66666666666666664

3

77777777777777775

; ð12Þ

where the rows are the same participants as in matrix X and the
columns are the participants’ number of words recalled and reac-
tion time scores, respectively. Note that both X and Y contain infor-
mation from the same participants and hence have the same number
of rows but are likely to have a different number of columns.

Both X and Y are centered and normalized within each condition
n (i.e., each Xn and Yn is centered and normalized independently,
and the sum of squares of a column in one condition is equal to 1,
note also then when all values are equal to their mean, they are

all normalized to zero). This normalization gives the following
matrices:

X =

−0:77 0:07 0:00 −0:59 0:71 −0:41 0:41 0:00 −0:79 −0:41 0:23 0:41
0:15 −0:74 −0:71 0:78 0:00 0:82 −0:82 0:71 0:57 0:82 0:57 −0:82
0:62 0:67 0:71 −0:20 −0:71 −0:41 0:41 −0:71 0:23 −0:41 −0:79 0:41

0:71 −0:41 0:27 0:29 0:00 −0:66 0:48 −0:31 −0:31 −0:59 0:23 −0:71
0:00 −0:41 0:53 0:51 0:00 0:75 0:33 −0:50 0:81 0:78 −0:79 0:71

−0:71 0:82 −0:80 −0:81 0:00 −0:09 −0:81 0:81 −0:50 −0:20 0:57 0:00

0:71 −0:41 0:62 −0:82 0:00 0:41 −0:41 −0:71 −0:15 −0:15 −0:51 −0:82
0:00 −0:41 0:15 0:41 0:71 0:41 −0:41 0:00 −0:62 0:77 −0:29 0:41

−0:71 0:82 −0:77 0:41 −0:71 −0:82 0:82 0:71 0:77 −0:62 0:81 0:41

2

66666666666666664

3

77777777777777775

ð13Þ

and

Ybehavior =

−0:79 0:78
0:57 −0:60
0:23 −0:17

0:00 0:78
−0:71 −0:61
0:71 −0:17

−0:82 0:79
0:41 −0:22
0:41 −0:57

2

66666666666666664

3

77777777777777775

: ð14Þ

Thematrix of correlations for each condition n is then computed as
(Fig. 4):

Rbehavior;n = YT
behavior;nXn: ð15Þ

All the condition-wise matrices of correlations are stacked one on
top of the other to form the combined matrix of correlations Rbehavior,
which is the input for the SVD. The Rbehavior matrix contains the

Fig. 4.MatrixX andmatrix Y for Behavior PLSC: The observations are arranged according toN conditions in bothmatrices and are normalizedwithin condition. Thematrix of correlations
(Rn) between each condition-wise sub-matrix (Xn and Yn) are stacked one below the other to form a combined matrix of correlations R which is then decomposed by SVD.
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The	  SVD	  

ì  SVD	  (like	  PCA,	  but	  for	  rectangular	  matrices)	  then	  produces	  
orthogonal	  latent	  variables	  that	  op4mally	  express	  
rela4ons	  between	  X	  and	  Y.	  

ì  Singular	  values	  rank-‐ordered	  by	  strength.	  

SVD of RXY = U S V’ 

Condition/group/
class/behaviour 

weights 

Voxel 
weights 

Singular 
values 



SVD:	  How	  many	  dimensions	  are	  
mathematically	  possible?	  

ì  #	  is	  always	  equal	  to	  the	  smaller	  rank	  of	  X	  (e.g.,	  voxel	  
measures)	  or	  Y	  (e.g.,	  behavioural	  measures/condi4ons)	  
ì  Ask	  the	  audience!	  How	  many	  dimensions	  possible	  here	  

(ignoring	  subjects)?	  
ì  6	  (2	  behav	  measures*3	  condi4ons;	  brain=12	  vox*3	  condi4ons)	  

What does PLSC optimize?
The goal of PLSC is to find pairs of latent vectors ℓ X;ℓ and ℓ Y;ℓ with

maximal covariance and with the additional constraints that (1) the
pairs of latent vectors made from two different indices are uncor-
related and (2) the coefficients used to compute the latent variables
are normalized (see Tucker, 1958; Tenenhaus, 1998, for proofs).
Formally, we want to find

ℓ X;ℓ = Xvℓ and ℓ Y;ℓ = Yuℓ

such that cov ℓ X;ℓ; ℓ Y;ℓ

! "
∝ ℓ T

X;ℓℓ Y;ℓ = max

ð6Þ

[where cov ℓ X;ℓ; ℓ Y;ℓÞ
#

denotes the covariance between ℓ X;ℓ and ℓ Y;ℓ]
under the constraints that

ℓ T
X;ℓℓ Y;ℓ′ = 0 when ℓ ≠ ℓ′ ð7Þ

(note that ℓ T
X;ℓℓ X;ℓ′ and ℓ T

Y;ℓℓ Y;ℓ′ are not required to be null) and

uT
ℓuℓ = vTℓvℓ = 1: ð8Þ

It follows from the properties of the SVD (see, e.g., Abdi and
Williams, 2010d; de Leeuw, 2007; Greenacre, 1984; Takane, 2002)
that uℓ and vℓ are singular vectors of R. In addition, from Eqs. (3–5),
the covariance of a pair of latent variables ℓ X;ℓ and ℓ Y;ℓ is equal to the
corresponding singular value:

ℓ T
X;ℓℓ Y;ℓ = δℓ: ð9Þ

So, when ℓ=1, we have the largest possible covariance between
the pair of latent variables. When ℓ=2 we have the largest possible
covariance for the latent variables under the constraints that the latent
variables are uncorrelated with the first pair of latent variables [as
stated in Eq. (7), e.g., ℓ X;1 and ℓ Y;2 are uncorrelated], and so on for
larger values of ℓ.

Deciding which latent variables to keep

The SVD of R corresponds to a fixed effect model; therefore, the
results can only be interpreted with respect to the original data sets.
Yet, in the framework of PLSC, the goal is to extract information
common to the two sets of data (e.g., brain activity and behavioral
measures) which can generalize to the population (i.e., a random effect
model; Abdi, 2010).

To generalize the results (i.e., to create a random effect model), we
could use an inferential analytical approach such as the one defined
by Tucker (1958), but this approach makes too many parametric
assumptions to be used routinely. Instead, we use computational
approaches, such as permutation tests, to obtain p-values, which can
then be used to identify the generalizable latent variables (McIntosh
and Lobaugh, 2004; McIntosh et al., 2004). In a permutation test, a
new data set, called a permutation sample, is obtained by randomly
reordering the rows (i.e., observations) of X and leaving Y unchanged.
The PLSC model used to compute the fixed effect model is then
recomputed for the permutation sample to obtain a new matrix of
singular values. This procedure is repeated for a large number of
permutation samples, say 1000 or 10,000. The set of all the singular
values provides a sampling distribution of the singular values under
the null hypothesis and, therefore can be used as a null hypothesis
test.

When a vector of saliences is considered generalizable and is
kept for further analysis, we need to identify its elements that are
stable through resampling. In practice, the stability of an element is
evaluated by dividing it by its standard error. Specifically, if σ̂ðuiÞ

and σ̂ðviÞ denote the standard errors of ui and vi, the stability of the
ith element of u and v are obtained (respectively) as:

ui

σ̂ðuiÞ
and

vi
σ̂ðviÞ

: ð10Þ

To estimate the standard errors, we create bootstrap samples
which are obtained by sampling with replacement the observations in
X and Y (Efron and Tibshirani, 1986). A salience standard error is then
estimated as the standard error of the saliences from a large number
of these bootstrap samples (say 1,000 or 10,000). The ratios from
Eq. (10) are akin to a Z-score, therefore when they are larger than 2
the corresponding saliences are considered significantly stable. Stable
saliences determine which voxels show reliable responses to the
experimental conditions (McIntosh et al., 2004; Efron and Tibshirani,
1986) and indicate the important saliences in the brain activity net-
work (Mentis et al., 2003).

As a technical aside, one problem when using permutation or
bootstrap methods is that resampling may cause axis rotation or
reflection. Axis rotation refers to a change in the order of the latent
variables that are extracted with each permutation. Reflection refers
to a change in the sign of the saliences for each bootstrap sample. A
Procrustes rotation or a variation of multidimensional scaling, such as
DISTATIS (Abdi et al., 2005; Abdi et al., 2009a), can be used to correct
for these rotations and reflections (see McIntosh and Lobaugh, 2004,
for more details).

Although it may seem that using both permutation tests and the
bootstrap is somewhat redundant, these twomethods provide, in fact,
different information. Permutation tests indicate whether a signal can
be differentiated from noise, but do not index signal reliability which
is, by contrast, provided by the bootstrap (see McIntosh and Lobaugh,
2004, for a discussion of detection and reliability).

PLS: mini-example

In order to illustrate the various versions of PLS we have chosen a
hypothetical neuroimaging experiment that analyzes data from
participants grouped into three experimental conditions comprising
two clinical populations, Alzheimer's disease (AD) and Parkinson's
disease (PD), and an age-matched normal control group (NC). Each
participant is scanned once using PET imaging. Voxel activity values
from the PET scans are collected separately for each participant and
stored in X. The scans are coregistered to Talairach coordinates so that
voxels are in the same location for eachparticipant. In this example,we
have three participants per clinical category (hence a total of 3×3=9
participants). The PET results are:

X =
X1
X2
X3

2

4

3

5 =

2 5 6 1 9 1 7 6 2 1 7 3
4 1 5 8 8 7 2 8 6 4 8 2
5 8 7 3 7 1 7 4 5 1 4 3

3 3 7 6 1 1 10 2 2 1 7 4
2 3 8 7 1 6 9 1 8 8 1 6
1 7 3 1 1 3 1 8 1 3 9 5

9 0 7 1 8 7 4 2 3 6 2 7
8 0 6 5 9 7 4 4 2 10 3 8
7 7 4 5 7 6 7 6 5 4 8 8

2

66666666666666664

3

77777777777777775

; ð11Þ

where the columns give voxel activity and the rows are participants
AD1, AD2, AD3 (which correspond to X1) PD1, PD2, PD3 (which
correspond toX2), NC1, NC2 and NC3 (which correspond toX3). Matrix
Y (and sometimes the preprocessing of X) will differ based on the
version of PLSC (i.e., behavior, task, seed, or multi-table).
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Behavior PLSC

Behavior PLSC analyzes the relationship between the behavioral
characteristics of groups and their functional brain activity. Matrix X
contains voxel activity [Eq. (11)] and Matrix Y, in this case, contains
various demographic (e.g., age) and/or behavioral data (e.g., neuro-
psychological tests, reaction times).

For our example, (fictitious) participants underwent behavioral
testing using a memory test for word recall. The behavioral measures
were the number of words correctly recalled and the average reaction
time (in ms). The behavioral data are:

Ybehavior =
Ybehavior;1
Ybehavior;2
Ybehavior;3

2

4

3

5 =

15 600
19 520
18 545

22 426
21 404
23 411

29 326
30 309
30 303

2

66666666666666664

3

77777777777777775

; ð12Þ

where the rows are the same participants as in matrix X and the
columns are the participants’ number of words recalled and reac-
tion time scores, respectively. Note that both X and Y contain infor-
mation from the same participants and hence have the same number
of rows but are likely to have a different number of columns.

Both X and Y are centered and normalized within each condition
n (i.e., each Xn and Yn is centered and normalized independently,
and the sum of squares of a column in one condition is equal to 1,
note also then when all values are equal to their mean, they are

all normalized to zero). This normalization gives the following
matrices:

X =

−0:77 0:07 0:00 −0:59 0:71 −0:41 0:41 0:00 −0:79 −0:41 0:23 0:41
0:15 −0:74 −0:71 0:78 0:00 0:82 −0:82 0:71 0:57 0:82 0:57 −0:82
0:62 0:67 0:71 −0:20 −0:71 −0:41 0:41 −0:71 0:23 −0:41 −0:79 0:41

0:71 −0:41 0:27 0:29 0:00 −0:66 0:48 −0:31 −0:31 −0:59 0:23 −0:71
0:00 −0:41 0:53 0:51 0:00 0:75 0:33 −0:50 0:81 0:78 −0:79 0:71

−0:71 0:82 −0:80 −0:81 0:00 −0:09 −0:81 0:81 −0:50 −0:20 0:57 0:00

0:71 −0:41 0:62 −0:82 0:00 0:41 −0:41 −0:71 −0:15 −0:15 −0:51 −0:82
0:00 −0:41 0:15 0:41 0:71 0:41 −0:41 0:00 −0:62 0:77 −0:29 0:41

−0:71 0:82 −0:77 0:41 −0:71 −0:82 0:82 0:71 0:77 −0:62 0:81 0:41

2

66666666666666664

3

77777777777777775

ð13Þ

and

Ybehavior =

−0:79 0:78
0:57 −0:60
0:23 −0:17

0:00 0:78
−0:71 −0:61
0:71 −0:17

−0:82 0:79
0:41 −0:22
0:41 −0:57

2

66666666666666664

3

77777777777777775

: ð14Þ

Thematrix of correlations for each condition n is then computed as
(Fig. 4):

Rbehavior;n = YT
behavior;nXn: ð15Þ

All the condition-wise matrices of correlations are stacked one on
top of the other to form the combined matrix of correlations Rbehavior,
which is the input for the SVD. The Rbehavior matrix contains the

Fig. 4.MatrixX andmatrix Y for Behavior PLSC: The observations are arranged according toN conditions in bothmatrices and are normalizedwithin condition. Thematrix of correlations
(Rn) between each condition-wise sub-matrix (Xn and Yn) are stacked one below the other to form a combined matrix of correlations R which is then decomposed by SVD.
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We’ve	  gained	  parsimony,	  but	  what	  else?	  

ì Mul4ple	  comparisons	  problem	  is	  minimized.	  

ì  “Brute	  force”	  of	  univariate	  approach	  not	  required.	  

ì  As	  in	  MVPA,	  brain	  data	  are	  leveraged	  together,	  but	  
PLS	  simply	  extends	  this	  logic	  to	  an	  arguably	  more	  
flexible	  model	  class	  than	  typically	  employed	  in	  the	  
MVPA	  world.	  	  	   	  	  



PLS:	  Another	  bonus…	  	  

ì  Brain	  weights	  can	  be	  either	  posi4ve	  or	  nega4ve	  across	  
voxels	  within	  a	  single	  dimension	  
ì  Unlike	  many	  univariate	  designs/packages,	  can	  visualize	  both	  

posi4ve	  and	  nega4ve	  voxel	  effects	  simultaneously.	  



ì	  
PLS:	  Practical	  details…	  



Typical	  forms	  of	  PLS	  

80 In this paper we will present PLSC, PLSR and their main variants
81 used in neuroimaging. We introduce each technique with a small
82 artificial example in order to describe the main computational steps.
83 For each technique we also present and review major applications
84 from the neuroimaging literature. A diagram outlining the various PLS
85 methods is shown in Fig. 1.

86 2. Notations

87 In this section, we review the main notations used in this paper. For
88 convenience, Appendix A also lists our main notations and acronyms
89 (see also Abdi and Williams, 2010c, for more details on matrices).
90 Data are stored in matrices which are denoted by upper case bold
91 letters (e.g., X). The identity matrix is denoted I. Column vectors are

92denoted by lower case bold letters (e.g., x). Matrix or vector
93transposition is denoted by an uppercase superscript T (e.g., XT).
94Two bold letters placed next to each other imply matrix or vector
95multiplication unless otherwise mentioned. The number of rows,
96columns, or sub-matrices is denoted by an uppercase italic letter
97(e.g., I) and a given row, column, or sub-matrix is denoted by a
98lowercase italic letter (e.g., i).
99Brain activity is stored in an I by Jmatrix denoted Xwhose generic
100element is denoted xi, j and where the rows are observations and the
101columns are variables. Matrix X is made up of N a priori sub-matrices,
102with In being the number of observations in sub-matrix n. The sum of
103the number of observations in all of the sub-matricesis the number of
104rows of X (i.e., I=∑ In; see Fig. 2a). When dealing with spatio-
105temporal neuroimaging methods (e.g., EEG, fMRI, NIRS), there are T

Fig. 2.Data representation formatrices (a)X and (b) Y. Note that the I observations ofX and Y are composed ofN sub-matrices,X1…Xn…XN and Y1…Yn…YN representing the groups
or trial types.

Fig. 1. The PLS family.
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e.g.,	  brain	  
and	  RTs	  

e.g.,	  brain	  and	  
young/middle/old	  

e.g.,	  fixa4on	  vs.	  
task	  

e.g.,	  brain	  and	  
DLPFC	  seed	  

(or	  condi4on	  diffs)	  



Model	  evaluation	  
ì  SVD	  as	  described	  above	  =	  fixed	  effect	  model;	  so	  how	  

can	  we	  generalize	  to	  the	  popula4on	  (like	  random	  
effects	  models)?	  
ì  Inferen4al	  analy4cal	  approaches	  are	  available,	  but	  arguably	  

make	  too	  many	  parametric	  assump4ons	  to	  be	  used	  
rou4nely	  across	  broad	  types	  of	  data.	  Why	  assume	  shape	  
when	  we	  can	  evaluate	  using	  nonparametric	  methods?	  	  



Two-‐stage	  nonparametric	  	  
model	  evaluation	  

1.  Dimensions	  to	  keep?	  Permuta4on	  on	  singular	  values	  
ì  A	  singular	  value	  represents	  the	  “strength”	  (like	  variance	  accounted	  for	  

in	  the	  data)	  of	  a	  par4cular	  dimension	  of	  XY	  rela4ons;	  how	  strong	  is	  
strong	  enough?	  

ì  We	  can	  test	  the	  robust	  strength	  of	  each	  singular	  value	  by	  randomly	  
shuffling	  rows	  of	  X	  without	  changing	  Y,	  and	  test	  whether	  singular	  value	  
would	  be	  just	  as	  high.	  

ì  Run	  new	  SVD	  on	  this	  reshuffled	  dataset,	  get	  singular	  value;	  do	  that	  
1000	  4mes	  to	  get	  distribu4on	  of	  singular	  values	  
ì  If	  get	  singular	  value	  as	  strong	  as	  in	  original	  data	  <	  .05,	  then	  keep	  

that	  dimension!	  



At	  voxel	  level…	  

ì  Now	  that	  we	  have	  chosen	  which	  latent	  variables	  to	  keep,	  we	  
need	  to	  “threshold”	  which	  brain	  data	  (e.g.,	  voxels)	  to	  reliably	  
report	  within	  those	  latent	  variables.	  

2.  Stage	  2	  then	  =	  Bootstrapping	  (with	  replacement)	  
ì  Reach	  into	  sample	  hat,	  pull	  out	  subject	  x;	  put	  back	  in,	  draw	  again,	  

etc.,	  un4l	  have	  a	  new	  “resample”	  of	  same	  size	  as	  original.	  
ì  Do	  that	  1000	  4mes,	  running	  SVD	  on	  each	  resample	  

ì  Derive	  bootstrap	  standard	  errors	  for	  each	  voxel.	  
ì  Original	  voxel	  weight/bootstrap	  standard	  error	  =	  BOOTSTRAP	  RATIO	  

(BSR).	  Tells	  us	  how	  probable	  it	  would	  be	  that	  this	  voxel	  is	  “really”	  
ac4ve,	  across	  mul4ple	  resamples.	  

ì  Typical	  choice:	  BSR=3.00	  (akin	  to	  z-‐score).	  	  



PLS:	  Individual	  differences	  	  

ì  Latent	  variables	  chosen,	  voxels	  thresholded...	  
but	  what	  about	  the	  subject	  level?	  
ì  “Brain	  score”	  

SVD of RXY = U S V’ 

Condition/
group 

weights 

Voxel 
weights 

Singular 
values 

Brain Scorei = Vj * Voxel!Data'ij 



ì	  
PLS:	  Published	  examples	  



Example	  #1:	  Linking	  BOLD	  signal	  variability	  to	  
age,	  RTmean,	  RTsd	  on	  three	  cognitive	  tasks	  

¡  Young,	  fast,	  stable	  adult	  performers	  =	  higher	  
SDBOLD	  (single	  robust	  LV).	  

	  Age	  	  	  	  	  MeanRT	  	  	  	  	  ISDRT	  	  	  	  	  	  	  
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GarreZ	  et	  al.	  (2011),	  JNeurosci	  



Example	  #2:	  Can	  AMPH	  boost	  	  
SDBOLD	  in	  older	  adults?	  (Garrett	  et	  al.,	  2015,	  PNAS)	  	  
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Example	  #3:	  Linking	  FA	  and	  meanBOLD	  
(*Burzynska,	  *Garrett,	  et	  al.,	  2013,	  JNeurosci)	  	  

Co
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ì  Single	  robust	  LV;	  Higher	  FA	  
correlated	  with	  lower	  BOLD	  
during	  n-‐back	  (1-‐,	  2-‐,	  3-‐back)	  	  
ì  Higher	  FA,	  lower	  n-‐back	  BOLD,	  

beZer	  behavioral	  performance.	  



Summary	  

ì  PLS	  is	  a	  useful	  technique	  for	  reducing	  data	  
dimensionality	  and	  finding	  “paZerns,”	  and	  can	  
capture	  broad	  scale	  rela4ons	  between	  any	  
brain	  data	  and	  any	  other	  variables	  of	  interest.	  

ì  Given	  non-‐parametric	  assump4ons,	  there	  are	  
no	  real	  bounds	  on	  the	  types	  of	  variables	  that	  
can	  be	  examined.	  

ì  Can	  be	  either	  exploratory	  or	  hypothesis	  driven;	  
it	  does	  what	  you	  tell	  it	  to	  do!	  



Many	  thanks	  to	  all!	  
ì  McIntosh	  PLS	  soJware:	  Google	  “PLS	  Rotman…”	  and	  

the	  latest	  release	  will	  come	  up.	  	  
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