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Univariate codes?
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Distributed population codes
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Sparse multivariate codes?
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Origin of single voxel response patterns? Origin of single voxel response patterns?
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The future? Classifiers
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Alternatives: Information-based feature selection




Temporal selection

Temporal selection is also linked to cross-validation
and statistical options
I

Pitfalls: Accuracies

Underestimating information

Classification accuracies reflect the result of a complex sampling of
single cell populations. Because a voxel might sample more than a

million neurons the information might be underestimated at the level
of voxels.

Overestimating information

The hemodynamic delay might integrate information across longer
timescales than neuronal integration time windows. Thus, the single-
cell population information might be overestimated.

Comparison across areas

Different regions might have different sampling patterns, different
numbers of neurons and voxels, different SNRs, different
hemodynamic response efficiencies, etc. Thus, a direct comparison of
information across regions is not possible.

Processing options
Levels of accuracy depend on partitioning of data into training and
test.

Pitfalls: Weight maps
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Pitfalls: Accuracies
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Discrimination accuracy

What does the classification accuracy ,mean*?

Pitfalls: Circularity and overfitting

Proper cross-validation

If different classifiers and parameters are used (linear, nonlinear,
parametric, nonparametric, etc.) this needs to be done in a nested
cross-validation, otherwise accuracies can be biased.

d degree polynomial
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Pitfalls

A weight map pertains to a classifier as a whole and does not
(directly) allow to interpret the involvement of individual voxels
-> presurgical mapping

If a voxel has a positive weight this does not imply that this voxel
has ,information” about the labels.




Pitfalls: Statistical testing Cross-validated MANOVA
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Especially for chance accuracies other than p=0.5
better to use permutation tests.

Gorgen & Haynes (in preparation)

Population receptive field modeling Encoding, decoding and reconstruction
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Representational similarity analysis Representational similarity analysis

Computational ROM model (V1 Computational ROM model (LOC:

V1 model LOC mode
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