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Constrained Nonlinear Optimization

m]}%réf(x) subjecttoc;(x) =0(i € E)andc;(x) = 0(i € 1)
xXe

Objective function fiR* >R
Equality constraint functions ¢;i;:R* >R (i €E)
Inequality constraint functions ci:RE>R (i€

EUI=N,EnI=0¢

Nocedal J and Wright SJ (2000) Numerical Optimization 2nd Ed.



Constrained Nonlinear Optimization
Solution strategy for constrained nonlinear optimization problems
(1) Formulate Lagrange function
L:RYX R, (x,Aq, oo, ) = L(x, Ay, o, A) = F(X) — Yicpur AiCi (%)

(2) First-order necessary conditions (Karush-Kuhn-Tucker conditions)

Let f(x*) < f(x) (Vx € N(x)),cl-(x*) =0(i€E)and c;(x*) =0 (i €.
Then there exists an Lagrange multiplier 2* := (13, ..., 2;,)T € R¥ such that
VeL(x*, A" ) =0,4;=20( €l)and Ajc;(x*) =0( €EUVUI

Many numerical algorithms for finding (x*, 1*) exist!

Nocedal J and Wright SJ (2000) Numerical Optimization 2nd Ed.
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Support Vector Classification

Training Data Set
{(x(i),y(i))}:;l o {(x(1),y(1)), (x(n)’y(n))} (x(z) e R™,y® ¢ {_1,1})

Discriminant Function
IR 5> Rxe f(x)=wlx+w, (WeR™w, €R)

Decision Function

giR = (L1}, f(0) = g(f (1)) = {‘1’ f() <0

1, f(x) =0

Hyperplane
H:={xeR"|f(x) =0} cR™



Support Vector Classification

A special case

_ . T
= x® = (xf),xgl)) € R2

. . X2
@ x® with y® = —1

@ x® withy® = +1

Dy, = {x € R*|f(x) > 0}

D_y = {x € R?|f(x) < 0}

X1
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Support Vector Classification
Fundamental aim of classifier training

I”

Determine w* € R™, w, € R such that training set classification is “optima

— Parameter point estimation for model h: R™ — {—1,1},x » h(x) = g(f(x))
Geometric properties of discriminant functions and hyperplanes

(1) w is orthogonal to any vector pointing in the direction of the hyperplane

(2) wy/|lw||, is the (direct) distance from the origin to a point on the hyperplane

= w and w, determine the location and orientation of the hyperplane

(3) The (direct) distance of a point x to the hyperplaneis d = — f(x)
2

= The discriminant function describes the distance from the hyperplane

(for proofs, see e.g. Ostwald Probabilistic Models for Functional Neuroimaging 2015)



Support Vector Classification

H = {x € R*|f(x) = 0}

~
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(for proofs, see e.g. Ostwald Probabilistic Models for Functional Neuroimaging 2015)



Support Vector Classification

Absolute (direct) distance of x( from hyperplane

5O = |d®| = ‘mf(xa)) | _ ﬁf(x(o) (=1 ..,

Iwll2

Hyperplane Margin
5* == min §®

1=1,...n

Support Vector Set

x*:={x® e (xW, .., x™M6® = 57}

Zaki M and Meira JR W (2014) Data Mining and Analysis



Support Vector Classification

\,
,/\\5(1) X* = {x(2)|5(2) — 5*}
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Support Vector Classification

Discriminant functions characterize hyperplanes up to scalar multiplication

f)=0oawlix+wy) =a- 0 awix+awy =0 af(x) =0
= Joint variation of the length of weight vector and bias yields the same hyperplane

Canonical discriminant function
Fix length of w and wy such that y*f(x*) = y*(Wwlix* + wy) = 1 (x* € X*)

v (wlx*+wy) 1

Iwll> Iwll>

= For support vectors: 6" =

= For non-support vectors: §® > —— = yO(wTx® + w) > 1

IIWII

Zaki M and Meira JR W (2014) Data Mining and Analysis



Support Vector Classification

Maximum margin classification for linearly separable training sets

\ 4

w”™ = arg max

& w* = arg min=wTw subject to yOwlx® +wy) > 1
w o lwll; w2



Support Vector Classification

Soft margin classification for not linearly separable training sets

yOwlx® +wy) > 1
l
yOWwlx® +wy) =1-¢

\ 4

(w*, &) = arg misp (% wiw +C Y1, Ei) subject to yO(wTx® +wy) = 1-¢,§ >0

)



Support vector classification and constrained nonlinear optimization
(w*,&*) = arg r‘?/lén (%WTW +CYM, fi) subject to y(i)(WTx(i) + WO) >1—¢,6=0

= mIierlf(x) subjecttoc;(x) =0(i € E)andc;(x) =0(i € 1)
X€E

Variable
X = (W, WO) g) € R2m+1

Objective function

f: R*™* S R, (w,wy, &) = f(w,wy, &) = %WTW +CZ?=1 $i
Inequality constraint functions
¢; : RP™ S R, (w,wp, &) = ¢;(w,wp, &) = yO(wlx® +w)+ & -1 =1,..,n)

¢; : RE™ML S R, (w,wy, &) & c;(w,wy, &) =¢&_,(i=n+1,..,2n)

Many algorithms for solving constrained nonlinear optimization problems exist!



Outline

Discussion



Discussion

Support vector classification parameter estimation

— A constrained nonlinear optimization problem

Neuroscientific value of the model?

Scientific value of the model’s inference scheme?



