Statistical inference and multiple testing correction in MVPA

Johannes Stelzer, 1st of September 2015

FOR HUMAN MAXCOGNITIVE AND BRAIN SCIENCES INSTITUTE LEIPZIG

whole-brain map of classifier's estimates (e.g. decoding accuracies)

thresholded map indicating statistical significance

2.4

r)?

I

how to get null distribution *parametrically* (common approaches in mvpa):

- binomial models
- t-based stats

real label	а	b	а	b	а	b	а	b	а	b	а	b	а	b
classifier's estimate	b	а	а	b	b	а	а	b	а	а	b	b	а	b

number of samples N = 20correct samples **c** = 12 accuracy = 0.6

binomial model:

$$p)^{N-c}$$

re	al label	а	b	а	b	а	b	а	b	а	b	а	b	а	
classifi	er's estimate	b	а	а	b	b	а	а	b	а	a	b	b	а	
	2x CV											т	Т	Т	
test set	4x CV														
	T 5x CV														
	10x CV														
	20x CV														

single model (no CV): $p_X(c) = {\binom{N}{c}} p^c (1-p)^{N-c}$ c = 0, 1, ..., N

with **t** CV-folds: (N trials per fold)

$$p_X(c) = \binom{N \cdot t}{c} p^c (1-p)^{N \cdot t-c}$$

Stelzer, J., Chen, Y., & Turner, R. (2013). Statistical inference and multiple testing correction in classification-based multi-voxel pattern analysis (MVPA): random permutations and cluster size control. Neuroimage, 65, 69–82. doi:10.1016/j.neuroimage.2012.09.063

Johannes Stelzer // Max Planck Institute for Biological Cybernetis, Tuebingen

Stelzer, J., Chen, Y., & Turner, R. (2013). Statistical inference and multiple testing correction in classification-based multi-voxel pattern analysis (MVPA): random permutations and cluster size control. Neuroimage, 65, 69–82. doi:10.1016/j.neuroimage.2012.09.063

problems regarding binomial model

- dependency between cross-validation folds undermines assumption of independency between trials
- (ignoring above problem): solution for one single voxel - multiple testing solution needed!

t-based methods and random fields procedure

- get voxel-wise accuracy map for each subject
- one sample t-test against 0.5 (2 classes)
- apply gaussian random-fields cluster level correction

problems regarding t-based framework

- decoding accuracies discrete (t-test assumes) continuous)
- accuracies don't follow normal distribution
- assumptions regarding random field theory & estimation of spatial smoothness not met

advantages of permutation testing

- (practically) assumption free
- yields voxel-wise null distribution
- spatial "chance maps" for free!
 - this provides a null distribution of cluster sizes!

Golland, P., Liang, F., Mukherjee, S., and Panchenko, D. (2005). Permutation Tests for Classification. 3559, 501–515. doi: 10.1007/11503415_34.

Hayasaka, S., and Nichols, T. E. (2003). Validating cluster size inference: random field and permutation methods. 20, 2343–2356. doi: 10.1016/j.neuroimage.2003.08.003.

Stelzer, J., Chen, Y., & Turner, R. (2013). Statistical inference and multiple testing correction in classification-based multi-voxel pattern analysis (MVPA): random permutations and cluster size control. Neuroimage, 65, 69–82. doi:10.1016/j.neuroimage.2012.09.063

Stelzer, J., Chen, Y., & Turner, R. (2013). Statistical inference and multiple testing correction in classification-based multi-voxel pattern analysis (MVPA): random permutations and cluster size control. Neuroimage, 65, 69–82. doi:10.1016/j.neuroimage.2012.09.063

Two common MVPA mapping methods

mapping classifier weights

searchlight decoding

information spread

searchlight

raw decoding accuracy

t-test voxel threshold p<10⁻³ no cluster thresholding

t-test FWE Cluster thresholding

proposed non-parametric test voxel threshold $p < 10^{-3}$ no cluster thresholding

proposed non-parametric test including cluster thresholding

threshold accuracy corresponding to $p=10^{-3}$ determined by permutation test

searchlight

Non-informative voxels declared significant

searchlight

raw decoding accuracy no cluster size thresholding

t-test FWE cluster thresholding

proposed non-parametric test including cluster thresholding

mapping classifier weights (FWM) information spread

FWM uncorrected weight map

FWM T-test cluster thresholded

FWM nonparametric test cluster thresholded

FWM thresholdmap for nonparametric test

mapping classifier weights (FWM)

mapping classifier weights (FWM)

FWM nonparametric test cluster thresholded classifier weight -0.02

group level null simulations **100** simulations carried out

cluster threshold (p)	0,01	0,02	0,03	0,04	0,05
E(clusters)	1	2	3	4	5
nonparametric: clusters	0	1	1	1	1
T-based: clusters	4	7	11	13	17

cluster threshold (p)	0,01	0,02	0,03	0,04	0,05
E(clusters)	1	2	3	4	5
nonparametric: (+)clusters	0	1	1	1	1
nonparametric: (-)clusters	0	2	2	2	2
T-based: (+)clusters	1	2670	2670	2670	2670
T-based: (-)clusters	0	2548	2548	2548	2548

MVPA @ 7T

searchlight decoding

data using multivariate featur

mpel, R., and Turner, R. (2014). Prioritizing spatial accuracy in highrain Imaging Methods 8, 66. doi:10.3389/fnins.2014.00066.

Johannes Stelzer // Max Planck Institute for Biological Cybernetis, Tuebingen

feature weight mapping

Buschmann, T., Lohma MRI data using multivaria

s, D. S., Trampel, R., and Turner, R. (2014). Prioritizing spatial accuracy in hight mapping. Brain Imaging Methods 8, 66. doi:10.3389/fnins.2014.00066.

Stelzer, J., Buschmann, T., Lohmann, G., Margulies, D. S., Trampel, R., and Turner, R. (2014). Prioritizing spatial accuracy in highresolution fMRI data using multivariate feature weight mapping. Brain Imaging Methods 8, 66. doi:10.3389/fnins.2014.00066.

issues

- computational burden
- spatial smoothness homogeneous
- small-scale patterns invisible (cluster stats)
- group stat issues

Eklund, A., Dufort, P., Villani, M., and LaConte, S. (2014). BROCCOLI: Software for Fast fMRI Analysis on Many-Core CPUs and GPUs. Front Neuroinform 8. doi:10.3389/fninf.2014.00024.

Stelzer, J., Lohmann, G., Mueller, K., Buschmann, T., and Turner, R. (2014). Deficient approaches to human neuroimaging. Front. Hum. Neurosci. 8. doi:10.3389/fnhum.2014.00462.

implementations

- PyMVPA (<u>http://www.pymvpa.org/</u>)
- CoSMoMVPA (<u>http://cosmomvpa.org/</u>)
- Lipsia 3.0 (to be released soon)

& thanks to Robert Turner Yi Chen Gabriele Lohmann Tilo Buschmann

thanks for your attention!

Johannes Stelzer // Max Planck Institute for Biological Cybernetis, Tuebingen

FOR HUMAN COGNITIVE AND BRAIN SCIENCES