The multivariate partial least squares
(PLS) framework for neuroimaging
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In search of multivariate data “patterns’

Multivariate technigues make using complex imaging
data simpler.

? Leverage vast information to maximize our understanding
of phenomena of interest.

MVPA:

#2 Often purported in neuroimaging as a multivariate
method, but is often utilized as a univariate technique
(e.g., linear discriminant and logistic models are
typically dimensionally univariate).

What about truly multivariate (multidimensional)
models?



Partial least squares (PLS)

Is a general multivariate (multidimensional) statistical
method:

? Whereas MVPA often leverages multiple sources of brain
activity to discriminate between discrete classes/groups/
states;

A PLS (McIntosh et al., 1996) is more general in form, allowing
researchers to find multivariate, latent-level “patterns”
linking brain data to any other variables of interest (classes,
continuous variables, etc.) in one mathematical step.

? Can be utilized in the context of EEG, fMRI (block design,
event-related), structural MR, PET, network indices, etc.



PLS: What's to gain?

71 PLSis an effective way of reducing dimensionality

72 Moves us to latent space: allows us to capture very complex
phenomenon in fewer dimensions than univariate = PARSIMONY

Age

Latent Behaviour

variable

Genetics

Disease




PLS: Details...

X =

X
X,
X3

PLS uses singular value decomposition (SVD) to
decompose large matrices into orthogonal dimensions

A E.g., linking ISDg; and meang; to fMRI voxel means in
three different task conditions (1-, 2-, 3-back); n=3.
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PLS: Data set up...

Y X
Behavior Brain Activity
Y, |1-back X,
X,
E Single,
xN R stacked R
| - matrix
submitted
I
Yi| x X, = R, |—| R, to SVD!
T —
. X, = R, — R,




The SVD

SVD (like PCA, but for rectangular matrices) then produces
orthogonal latent variables that optimally express
relations between X and Y.

Singular values rank-ordered by strength.

SVD of R,,=U S V'

.. Singular
Condition/group/ values Voxel

class/behaviour weights
weights



SVD: How many dimensions are

mathematically possible?

X —

# is always equal to the smaller rank of X (e.g., voxel
measures) or Y (e.g., behavioural measures/conditions)

?2 Ask the audience! How many dimensions possible here

(ignoring subjects)?

? 6 (2 behav measures*3 conditions; brain=12 vox*3 conditions)
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We've gained parsimony, but what else?

Multiple comparisons problem is minimized.

“Brute force” of univariate approach not required.

As in MVPA, brain data are leveraged together, but
PLS simply extends this logic to an arguably more

flexible model class than typically employed in the
MVPA world.



PLS: Another bonus...

Brain weights can be either positive or negative across
voxels within a single dimension

7 Unlike many univariate designs/packages, can visualize both
positive and negative voxel effects simultaneously.
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PLS: Practical details...



l Behavior PLSC

Typical forms of PLS

Analyzes information
» common to brain &

behavior/design

—» Analyzes group differences
(or condition diffs)

Analyzes brain with
contrasts

Mean-centered
( TaskPLSC san-center
Non-rotated
Task PLSC
Seed PLSC

Analyzes brain

connectivity patterns

e.g., brain
and RTs

e.g., brain and
young/middle/old

e.g., fixation vs.
task

e.g., brain and
DLPFC seed



Model evaluation

SVD as described above = fixed effect model; so how
can we generalize to the population (like random
effects models)?

7 Inferential analytical approaches are available, but arguably
make too many parametric assumptions to be used
routinely across broad types of data. Why assume shape
when we can evaluate using nonparametric methods?

Critial Values for Standard Normal
Two-talled test and c=.05

Density
2




Two-stage nonparametric

model evaluation

Dimensions to keep? Permutation on singular values

?2 Asingular value represents the “strength” (like variance accounted for

in the data) of a particular dimension of XY relations; how strong is
strong enough?

? We can test the robust strength of each singular value by randomly

shuffling rows of X without changing Y, and test whether singular value
would be just as high.

72 Run new SVD on this reshuffled dataset, get singular value; do that
1000 times to get distribution of singular values

If get singular value as strong as in original data < .05, then keep
that dimension!



At voxel level...

Now that we have chosen which latent variables to keep, we
need to “threshold” which brain data (e.g., voxels) to reliably
report within those latent variables.

Stage 2 then = Bootstrapping (with replacement)

72 Reach into sample hat, pull out subject x; put back in, draw again,
etc., until have a new “resample” of same size as original.

2 Do that 1000 times, running SVD on each resample

Derive bootstrap standard errors for each voxel.

Original voxel weight/bootstrap standard error = BOOTSTRAP RATIO
(BSR). Tells us how probable it would be that this voxel is “really”
active, across multiple resamples.

Typical choice: BSR=3.00 (akin to z-score).




PLS: Individual differences

Latent variables chosen, voxels thresholded...
but what about the subject level?

72 “Brain score”

SVDof R,y =USV

Condition/ ~ Sngular el
values .
group weights
weights

Brain Score; = V;* Voxel Data’;
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PLS: Published examples



Example #1: Linking BOLD signal variability to

clo[ RT., on three cognitive tasks

mean/

Young, fast, stable adult performers = higher
SDgqp (Single robust LV).

Age Meang; ISDg;

Garrett et al. (2011), JNeurosci



Example #2: Can AMPH boost

SDBOLD in older adults? (Garrett et al., 2015, PNAS)

380 {

320 -

SDgg p Brain Score

i

Placebo n AMPH Placebo‘ AMPH
Young Adults Older Adults

" Fixation ™ 1-back 2-back ¥ 3-back

260
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Example #3: Linking FA and meang,

(*Burzynska, *Garrett, et al., 2013, JNeurosci)

Single robust LV; Higher FA

b

.
correlated with lower BOLD jk
during n-back (1-, 2-, 3-back)

? Higher FA, lower n-back BOLD, %ﬁ %& g}
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Summary

PLS is a useful technique for reducing data
dimensionality and finding “patterns,” and can
capture broad scale relations between any
brain data and any other variables of interest.

Given non-parametric assumptions, there are
no real bounds on the types of variables that
can be examined.

Can be either exploratory or hypothesis driven;
it does what you tell it to do!



Many thanks to all!

MclIntosh PLS software: Google “PLS Rotman...” and
the latest release will come up.
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