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Abstract: Knowledge about the principles that govern large-scale neural representations of objects is cen-
tral to a systematic understanding of object recognition. We used functional magnetic resonance imaging
(fMRI) and multivariate pattern classification to investigate two such candidate principles: category pref-
erence and location encoding. The former designates the preferential activation of distinct cortical regions
by a specific category of objects. The latter refers to information about where in the visual field a particu-
lar object is located. Participants viewed exemplars of three object categories (faces, bodies, and scenes)
that were presented left or right of fixation. The analysis of fMRI activation patterns revealed the follow-
ing. Category-selective regions retained their preference to the same categories in a manner tolerant to
changes in object location. However, category preference was not absolute: category-selective regions also
contained location-tolerant information about nonpreferred categories. Furthermore, location information
was present throughout high-level ventral visual cortex and was distributed systematically across the
cortical surface. We found more location information in lateral-occipital cortex than in ventral-temporal
cortex. Our results provide a systematic account of the extent to which the principles of category prefer-
ence and location encoding determine the representation of objects in the high-level ventral visual cortex.
Hum Brain Mapp 34:1636–1651, 2013. VC 2012 Wiley Periodicals, Inc.
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INTRODUCTION

Knowing the principles that govern large-scale object
representations in the brain is central to a systematic
understanding of object recognition [Grill-Spector et al.,
2001; Logothetis and Sheinberg, 1996; Op de Beeck et al.,
2008a; Reddy and Kanwisher, 2006]. Category preference,
the tendency of a cortical patch to preferentially activate
upon presentation of objects of specific category, and loca-
tion encoding, information about the position in the visual
field at which an object is presented, are two candidates
for such principles [Malach et al., 2002; Schwarzlose et al.,
2008]. However, the extent to which category preference
and location encoding govern object representation in the
brain and how they interact is a matter of controversy and
current research [Op de Beeck et al., 2008a].

Category Preference

The use of functional magnetic resonance imaging
(fMRI) in the investigation of object representation led to
the discovery of a number of focal cortical regions in high-
level ventral visual cortex that display category preference.
That is, these regions respond more strongly to a particu-
lar object category, i.e., faces, places, or bodies, than to
other object categories [Grill-Spector and Malach, 2004; Op
de Beeck et al., 2008a,b; Reddy and Kanwisher, 2007].
However, the category preference observed in these
regions is not absolute, i.e., these respond to nonpreferred
categories as well, albeit to a lesser extent.

Prior studies have resulted in a mixed picture on the
degree of location tolerance in high-level ventral visual
cortex. Some studies have indicated location-tolerant
encoding of object information in both monkey and
human [Carlson et al., 2011; Cichy et al., 2011a,b; Hung
et al., 2005; Sayres and Grill-Spector, 2008; Schwarzlose
et al., 2008; Stokes et al., 2011]. Conversely, other studies
have not found evidence for location-tolerant object encod-
ing [Kravitz et al., 2010] or argued that changes in low-
level features of presented objects strongly modulate
encoding of preferred and nonpreferred categories in cate-
gory-selective regions [Yue et al., 2011]. Thus, we investi-
gated the degree to which category-selective regions
encode both preferred and nonpreferred object categories
tolerant to changes in location.

Location Encoding

Several strands of research have indicated that high-
level ventral visual cortex encodes object location. fMRI
studies have documented a contralateral visual field bias,
i.e., a preferential response to contralateral compared with
ipsilateral visual stimulation [Grill-Spector et al., 1998;
Hemond et al., 2007; MacEvoy and Epstein, 2007; McKyton
and Zohary, 2007; Niemeier et al., 2005; Sayres and Grill-
Spector, 2008]. Also, an eccentricity bias seems to exist:
Face-selective fusiform face area (FFA) is activated prefer-

entially by foveal stimulation, whereas scene-selective par-
ahippocampal place area (PPA) is preferentially activated
by peripheral visual stimulation [Hasson et al., 2002; Levy
et al., 2001; Malach et al., 2002]. Moreover, high-level ven-
tral visual cortex was observed to partially overlap with
retinotopic cortex [Brewer et al., 2005; Larsson and Heeger,
2006; Sayres and Grill-Spector, 2008]. Finally, high-level
ventral visual cortex was shown to contain information
about veridical and perceived locations of objects using
multivariate pattern analysis [Carlson et al., 2003; Fischer
et al., 2011; Schwarzlose et al., 2008]. Taken together, these
results indicate that the encoding of object location may be
another principle of the large-scale representation in
object-selective cortex. However, the exact extent of loca-
tion encoding in the ventral visual stream remains to be
determined.

In this study, we used fMRI and multivariate pattern
analysis [Cox and Savoy, 2003; Haxby et al., 2001; Haynes
and Rees, 2005a,b; Kamitani and Tong, 2005; Kriegeskorte
et al., 2007; Spiridon and Kanwisher, 2002; Williams et al.,
2008] to systematically investigate category preference and
location encoding and the way they interact in the human
ventral visual system.

METHODS

Participants and Experimental Design

Sixteen healthy, right-handed volunteers with normal or
corrected to normal vision (age 22–33 years, 8 female) par-
ticipated in the study. The study was approved by the
local ethics committee of the Max-Planck Institute of
Human Cognitive and Brain Sciences (Leipzig) and con-
ducted according to the Declaration of Helsinki.

Each participant completed 5 runs (duration 642 s) of
the main experiment. During each run, participants
viewed pictures of three different object exemplars in four
different categories (Fig. 1A). The pictures (size 4.8�) were
presented for 4 s at a position either 6� left or right of fixa-
tion (Fig. 1B) in pseudorandom order. In total, there were
48 stimulus presentations per run (2 locations � 12 exem-
plars � 2 repetitions). Stimulus presentations were inter-
leaved with randomly jittered interstimulus intervals of 2–
6 s duration during which a gray background screen was
shown. During stimulus presentation, participants were
instructed to fixate a central white square. Between stimu-
lus presentations, the central white square turned red and
opened left or right every second (open 800 ms, closed 200
ms), forming a Landolt-C. Participants pressed a button
indicating the direction of the opening of the Landolt-C.
The pictures were equalized in mean luminance. Visual
stimulation was interleaved with conditions not relevant
for the analysis presented here.

Before scanning, participants completed 1–3 modified
runs of the main experiment to learn the fixation task and
to familiarize themselves with the experiment. The modi-
fied runs were identical in setup to the main experiment
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with the exception of the substitution of the gray back-
ground with a random-dot display of black and white
dots in the practice session. The display inverted pixel
luminance in every frame. When participants held fixation
as required, the alternating displays gave the impression

of a uniform gray background. In contrast, eye movements
led to a striking experience of a flash [Guzman-Martinez
et al., 2009]. Participants were asked to maintain fixation
to avoid the experience of the flash. All participants
reported noticing the effect and using it as feedback to
improve fixation.

After the main fMRI experiment, each participant per-
formed 5 localizer runs (duration 180 s each) to identify
category-selective regions and lateral occipital complex
(LOC) [Grill-Spector and Malach, 2004; Malach et al., 1995].
Participants viewed blocks of images from five different
stimulus classes (bodies, faces, scenes and houses, every-
day objects, and grid-scrambled objects). In each run, two
blocks of images from each of the five different stimulus
classes were shown, i.e., in total 10 image blocks. Blocks of
images were interleaved with 16 s periods of a uniform
black background. Each image block had a duration of 16 s
and consisted of 20 images (presentation time 600 ms, 200
ms gap). To preclude a foveal bias in the cortical activation,
the same picture was presented simultaneously at three ad-
jacent positions (left, middle, and right) along the horizon-
tal meridian. Participants were asked to maintain fixation
on a central fixation dot. In each block, at random, four of
the 20 images were selected to be repeated consecutively.
Participants performed a one-back task on repetitions of an
image to sustain attention to the images indicating their
response via a button press. The serial order of conditions
was counterbalanced within participants.

Finally, 10 participants participated in a retinotopic
mapping session to identify low-level visual regions V1,
V2, and V3 using the standard traveling wave method
with a double wedge and expanding ring stimuli [DeYoe
et al., 1996; Sereno et al., 1995; Wandell et al., 2007]. Gray
matter segmentation of anatomical images was conducted
using FreeSurfer [Dale et al., 1999], and mrGray was used
for cortical flattening [Wandell et al., 2000].

fMRI Acquisition

A 3 T Trio scanner (Siemens, Erlangen, Germany) with a
12-channel head-coil was used to acquire MRI data.

Figure 1.

Stimuli and experimental design of the main experiment. A: Par-

ticipants viewed photos of three object exemplars in four cate-

gories: objects, scenes, body parts, and faces. B: Schematic

drawing of the visual stimulation conditions. Participants were

presented with stimuli either left or right of a central fixation

square. C: Stimulus presentations (duration 4 s) were inter-

leaved with periods of a gray background screen with a variable

duration of 2–6 s. During the whole experiment, participants

were instructed to fixate a central square. During stimulus pre-

sentation, the fixation square was white. At the end of a stimu-

lus presentation, the central fixation square turned red and

opened left or right every 1,000 ms (open 800 ms, closed 200

ms). Subjects indicated the direction of the opening by a button

press. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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Structural images were acquired with a T1 weighted
sequence (192 sagittal slices, field of view (FOV) ¼ 256
mm2, repetition time (TR) ¼ 1,900 ms, echo time (TE) ¼
2.52 ms, flip angle ¼ 9�). For the main experiment, 5 runs
of 321 volumes were acquired for each participant (gradi-
ent-echo echo planar imaging (EPI) sequence: TR ¼ 2,000
ms, TE ¼ 30 ms, flip angle ¼ 70�, FOV ¼ 256 � 192 mm2,
FOV phase ¼ 75%, matrix ¼ 128 � 96, ascending acquisi-
tion, gap ¼ 10%, resolution ¼ 2 mm isotropic, slices ¼ 24).
Slices were positioned parallel to the temporal lobe, such
that the fMRI volume covered the ventral visual regions
from low-level visual to anterior temporal cortex. For the 5
localizer scans, consisting of 90 volumes each, the parame-
ters were identical. For the retinotopic mapping, 6–8 runs
of 160 volumes were acquired for each participant (gradi-
ent-echo EPI sequence: TR ¼ 1,500 ms, TE ¼ 30 ms, flip
angle ¼ 90�, FOV ¼ 256 � 192 mm2, matrix ¼ 128 � 96,
ascending acquisition, gap ¼ 50%, resolution ¼ 2 mm iso-
tropic, slices ¼ 25). The slices were positioned parallel to
the calcarine sulcus.

fMRI Analysis

All functional data were processed using SPM2
(www.fil.ion.ucl.ac.uk/spm). Data were realigned and
slice-time corrected. In the following, we will first describe
the analysis of the functional localizers that served the def-
inition of regions of interest (ROIs). We then explain the
analysis of the main experiment.

Localizers and Definition of Regions of Interest

First, we modeled the fMRI response in the localizer runs
to identify category-selective regions and LOC. Functional
data of the localizer runs were spatially smoothed with a 4
mm full width half maximum (FWHM) Gaussian kernel.
The data were modeled with a general linear model (GLM)
that included the five stimulus classes as conditions (faces,
places, bodies, objects, and scrambled objects).

Next, we identified voxels that showed category prefer-
ence by contrasting parameter estimates evoked by the spe-
cific category in question with parameter estimates evoked
by all other categories. In this manner, face-selective (T-con-
trast faces > objects þ places þ bodies), body-selective (T-
contrast bodies > objects þ places þ faces, and place-selec-
tive (T-contrast places > objects þ faces þ bodies) voxels
were defined. Similarly, we identified voxels activated more
by pictures of objects than by their scrambled counterparts
(T-contrast objects > scrambled objects). Next, we defined
(ROIs) in a multistep process. First, we identified the most
activated voxel in each contrast (thresholded at P < 0.0001,
uncorrected) on the lateral-occipital and ventral-temporal
surface of the brain respectively. Then, we defined a sphere
with a 7 voxel radius around this voxel. This step limited
further voxel selection by vicinity and by anatomical loca-
tion. Next, within this sphere, we selected all voxels that
passed a P < 0.0001 threshold (uncorrected). Finally, we
excluded every voxel present in more than a single ROI

from all ROIs. This procedure ensured that ROIs never
overlapped. This yielded up to 12 category-selective ROIs
in each subject: bilateral FFA and occipital face area (OFA)
for faces [Clark et al., 1996; Gauthier et al., 2000; Halgren
et al., 1999; Haxby et al., 2000; Kanwisher et al., 1997; Puce
et al., 1995]; the fusiform body area (FBA) and extrastriate
body area (EBA) for bodies [Downing et al., 2001; Peelen
and Downing, 2005; Schwarzlose et al., 2005]; and the PPA
and transverse occipital sulcus (TOS) to places and scenes
[Aguirre et al., 1998; Epstein and Kanwisher, 1998; Hasson
et al., 2003]. In addition, up to four object-selective ROIs
were identified in the same fashion: bilateral fusiform gyrus
(FUS) and lateral-occipital activation (LO) [Eger et al., 2008;
Grill-Spector and Malach, 2004; Malach et al., 1995]. Note
that not every ROI was present in all participants. The fol-
lowing numbers of ROIs were identified: FFA (30), OFA
(30), PPA (32), TOS (31), FBA (21), EBA (31), FUS (32), and
LO (32). For illustrative purposes, a rendering of the ROIs
defined in a representative subject is available in Support-
ing Information Figure 1. Importantly, our ROI identifica-
tion procedure takes into account individual differences in
the location and size of category-selective regions.

Finally, we selected voxels in low-level visual areas V1,
V2, and V3 as defined by retinotopic mapping. We calcu-
lated a T-contrast all classes of visual stimulation > base-
line and chose the 300 most activated voxels in V1, V2,
and V3 each.

Main Experiment

For the analysis of the main experiment, we modeled
the fMRI response to the experimental conditions for each
run separately using a GLM. We treated each of the 12
objects presented either in the left or the right hemifield as
single conditions, yielding in total 24 conditions. The
onsets and durations of the stimulus presentations were
entered into a GLM as regressors and convolved with a
hemodynamic response function (HRF). This yielded 24
parameter estimates per run, representing the responsive-
ness of each voxel to the 12 different objects presented
either in the right or the left visual hemifield.

Pattern Classification

Data from the main experiment were subjected to three
multivoxel pattern classification analyses [Haynes and
Rees, 2006; Kriegeskorte et al., 2006; Müller et al., 2001;
Norman et al., 2006] using a linear support vector classifier
(SVC) with a fixed regularization parameter C ¼ 1 in the
LibSVM implementation (www.csie.ntu.edu.tw/�cjlin/
libsvm). The three analyses investigated (1) classification
of objects within location, (2) location classification across
objects, and (3) classification of objects across locations.
Each analysis shared a basic framework that was adapted.
Analyses were conducted independently for each ROI and
for each subject. For each run, we extracted parameter esti-
mates for the experimental conditions under investigation
(see below). Pattern estimates were ordered as vectors
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before entering pattern classification. Pattern vectors from
four out of five runs were assigned to a training data set
which was used to train the SVC. The trained SVC was
used to classify pattern vectors from the independent test
data set consisting of the fifth run. Fivefold cross-valida-
tion was carried out by repeating this procedure, each
time with pattern vectors from a different run assigned to
the independent test data set. Decoding accuracies were
averaged over these 5 iterations. Second-level analyses
were conducted across identified ROIs. We tested decod-
ing accuracies by means of repeated-measures analyses of
variance (ANOVA), one-sample t-tests against chance-
level, and paired t-tests. In the case where ROIs could not
be identified in all subjects, missing ROIs were excluded
case by case. Error bars indicate the standard error of the
mean across ROIs. All t-tests were Bonferroni-corrected.

Classification of Objects Within Location

We tested whether activation patterns in category-selec-
tive regions contain object information within location.
This allowed us to ascertain whether activation patterns
evoked in the main experiment in regions determined by
the independent localizer run display category preference.
That is, it allowed us to determine whether activation pat-
terns in category-selective regions contained more infor-
mation about the preferred category than about
nonpreferred categories. Moreover, it allowed us to deter-
mine whether activation patterns are influenced by stimu-
lus location by testing for a contralateral visual field bias.

For this purpose, a classifier was trained and tested
pair-wise to discriminate between activation patterns
evoked by different exemplars within location (Fig. 2A).
That is, the location of stimulus presentation (left or right
of fixation) was identical for both the training and the test
set. The classification was conducted in each of the cate-
gory-selective ROIs and for all possible exemplar pairs.
Decoding results were grouped and sorted in a three-stage
process. First, only decoding results of classifications of
exemplars from different categories were considered for
further analysis. These, in contrast to classifications
between exemplars of the same category that yield infor-
mation on the level of exemplars within a category are im-
portant for our investigation of category preference.
Second, decoding results were grouped as originating
either from a ROI ipsi- or contra-lateral to the hemifield of
visual stimulation. This allowed us to test for the contralat-
eral visual field bias. Third, results were grouped accord-
ing to category preference. In particular, results of
classifications involving an exemplar of the preferred cate-
gory (e.g., a face in FFA) were averaged together and con-
sidered to indicate preferred category information. Results
of classification not involving an exemplar of the preferred
category (e.g., a body part and a place in FFA) were
averaged together and considered to indicate nonpreferred
category information. As a control analysis, we tested for a

contralateral visual field bias in low- and high-level visual
cortex. Thus, we repeated the analysis on activation pat-
terns in V1, V2, and V3. Here, decoding results were
grouped together and averaged depending only on
whether they originated from a ROI ipsi- or contra-lateral
to the hemifield of visual stimulation.

Classification of Objects Across Locations

We examined whether activity patterns in category-
selective regions contain information about objects across
locations. We trained a classifier to differentiate between
activation patterns evoked by exemplars presented in one
visual hemifield (Figure 3A) and tested the classifier on
activation patterns evoked by exemplars presented in the
other hemifield. The classification was conducted for all
possible exemplar pairs and for both possible location
assignments to the training and test set. Only decoding
results of classifications of exemplars from different cate-
gories were considered for further analysis, as these indi-
cate object information at the category level. Decoding
results were grouped according to category (preferred vs.
nonpreferred) as described for the first classification analy-
sis (location-dependent category information). To test for
the presence of location-tolerant category information in
low-level visual cortex, a classifier was trained and tested
on activation patterns derived from V1, V2, and V3,
respectively.

Next, we tested whether nonpreferred responses in cate-
gory-selective regions may form a part of a wider repre-
sentation of the nonpreferred category. We investigated
whether nonpreferred responses in category-selective
regions are structured by category using two steps of anal-
ysis. In the first step, we visualized the category structure
by performing multidimensional scaling (MDS). Decoding
accuracies for discriminations between exemplars can be
regarded as a dissimilarity measure between activation
patterns. The more dissimilar two activation patterns are,
the easier it is to discriminate between them. Activation
patterns of two object exemplars belonging to the same
category should be more similar to each other than activa-
tion patterns of two exemplars belonging to different cate-
gories. Thus, we visualized the similarity structure present
in decoding accuracies for pair-wise comparisons of exem-
plars by MDS. Second, we investigated the category struc-
ture quantitatively. For each subject and for each category-
selective region, we averaged decoding accuracies across
discriminations between exemplars from the same cate-
gory and across exemplars from different categories (Fig.
5A). Then, in each category-selective region, we tested for
differences between the resulting groups by paired t-tests
across participants. This analysis excluded any decoding
accuracies of discriminations involving exemplars of the
preferred category (e.g., exclusion of faces for FFA and
places for PPA) to exclusively investigate category struc-
ture in nonpreferred responses.
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Classification of Locations Across Objects

To investigate the encoding of location information in
the ventral visual cortex in a spatially unbiased fashion,

we used a novel surface-based searchlight decoding tech-
nique [Chen et al., 2011]. We first extracted the cortical
surface for each subject using Freesurfer [Dale et al., 1999;
Fischl et al., 1999a, 2001; Ségonne et al., 2004]. Second, we

Figure 2.

Object classification within location. A: To assess object encod-

ing within location, a classifier was trained and tested pair-wise

to discriminate between activation patterns evoked by different

exemplars (A). That is, the location of stimulus presentation

(left or right of fixation) was identical for both the training and

the test set. B: Illustration of the hypothetical flow of visual

object information in the brain. Visual information from the left

visual hemifield is fed forward to low-level visual areas in the

right (contralateral) hemisphere exclusively. As visual informa-

tion is processed further in the visual hierarchy, information

from the right (contralateral) hemisphere crosses over to the

left (ipsilateral) hemisphere through transcallosal connections.

Note that the nodes in the information flow are color-coded

such that the colors reflect the origin of the classification results

reported in panels (C) and (D) (e.g., red and yellow for classifi-

cation results originating from higher order regions contralateral

to the hemifield of visual stimulation). C: Category classification

within location in low-level visual areas. All low-level visual areas

show a strong bias for the contralateral visual field. The gray

striped line indicates classification chance level (50%). Results

show the mean decoding accuracy � SEM. D: Results of object

classification within location in category-selective regions. All

ROIs exhibited category preference. Moreover, all regions

except TOS showed a contralateral visual field bias, as indicated

by higher category information contralateral than ipsilateral to

visual stimulation. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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defined disks of voxels of a radius of 16 mm around each
vertex on the extracted cortical surface. Third, all voxels
that were included in the disk were assigned to the search-
light corresponding to the disk’s center. For each vertex,
we extracted the unsmoothed parameter estimates in the

searchlight in each run evoked by objects presented either
in the left or the right visual hemifield. Data from 4 runs
of the main experiment were used to train a linear SVC to
distinguish activation patterns evoked by an exemplar pre-
sented either left or right of fixation. Then, data from the
fifth run were used to test the classifier on activation pat-
terns evoked by another exemplar presented in identical
locations (Fig. 6A). This analysis was repeated for all pos-
sible exemplar pairs. Fivefold cross-validation was carried
out as described above. For each subject, the resulting
decoding accuracy was used to create a two-dimensional
surface of decoding accuracy of location. These decoding
accuracy surfaces were normalized to a standard surface
based on cortical curvature [Fischl et al., 1999b] and spa-
tially smoothed along the cortical surface using a 15-mm
Gaussian kernel. Finally, we used second-level across-sub-
jects t-tests to compare decoding accuracy maps against
chance level. Results are reported as t-values at a signifi-
cance level of P < 0.01, false discovery rate (FDR)-
corrected.

In addition, we determined whether activation patterns
in predefined ROIs encode location across objects. As for
the surface-based analysis, a classifier was trained to dis-
tinguish between two locations of a specific exemplar. The
classifier was then tested on the two locations of a differ-
ent exemplar (Fig. 6A). The classification was repeated for
all possible exemplar pairs and decoding accuracies were
averaged. This analysis was conducted in each category-
selective ROI and in low-level visual areas (V1, V2,
and V3).

RESULTS

In the following, we will present the results of the three
multivoxel pattern classification analyses. First, we investi-
gated object information within location and ascertained

Figure 3.

Category classification across locations. A: We asked how much

information about preferred and nonpreferred categories is

present in category-selective regions across locations. Thus, we

trained a classifier to distinguish between activation patterns of

exemplars from different categories presented in one location,

and tested the classifier on activation patterns of the same

exemplars in the other location. B: Results of category classifi-

cation across locations in category-selective cortex. All regions

contained more information about preferred than nonpreferred

categories. Interestingly, nearly all regions also contained infor-

mation about nonpreferred categories. Results represent the

mean decoding accuracy � SEM. The red dashed line indicates

classification chance level (50%). C: Results of category classifi-

cation across locations in low-level visual cortex. There was no

evidence for category information across locations in low-level

visual areas. Results represent the mean decoding accuracy �
SEM. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]

r Cichy et al. r

r 1642 r



both category preference and a contralateral visual field
bias in category-selective regions. Second, we found that
category-selective regions contain information about exem-
plars of their preferred and, importantly, also nonpre-
ferred categories tolerant to changes in location in a
structured fashion. Third, location information tolerant to
changes in object category was present throughout the
ventral visual steam and systematically distributed across
category- and object-selective regions.

Classification of Objects Within Location

We examined whether activation patterns in category-
selective regions were predictive of objects presented at
the same location (Fig. 2A). Therefore, we determined
how much location-dependent information is contained
in category-selective regions ipsi- and contra-lateral to
the hemifield of visual presentation (Fig. 2B). The results

are displayed in Figure 2C. The results are color-coded
dependent on the relation of the ROI to the hemifield
of visual presentation (see Fig. 2B) and whether exem-
plars form preferred or nonpreferred categories were
classified.

All category-selective regions contained more category
information for the preferred category than for the nonpre-
ferred category. Furthermore, all category-selective regions
showed a clear contralateral visual field bias: They con-
tained more information about objects presented in the
contralateral than in the ipsilateral visual hemifield.

We tested the statistical significance of these observations
by conducting 2 � 2 repeated-measures ANOVAs on
decoding accuracies for location-dependent category classifi-
cation with factors laterality of region (contralateral vs. ipsi-
lateral to the side of visual stimulation) and category
preference (preferred vs. nonpreferred category) for each
category-selective region. All ANOVAS showed a significant

Figure 4.

Classification results across locations and MDS. A: Exemplary

results of object classification across location in EBA and FFA

for all pair-wise object classifications. Each colored cell in a ma-

trix represents decoding accuracy for classification between two

object exemplars (see color bar on the right). B: The right panel

displays the location of object exemplars in the space defined by

the first 2 dimensions derived by MDS on representational dis-

similarity between object exemplars. The results indicate that

object exemplars in both preferred and nonpreferred categories

tend to cluster together according to category. [Color figure

can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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main effect of the factor category preference (all P < 1.0 �
10�4, Supporting Information Table 1). Further, all
ANOVAs showed a significant main effect of the factor lat-
erality of region (P < 0.05). Only the ANOVA for EBA
showed a significant interaction effect (P < 0.05). However,
paired-samples post hoc t-tests on category preference and
laterality in EBA were highly significant (all P < 1 � 10�4).
A supplementary analysis in FUS and LOC yielded compa-
rable results (Supporting Information Analysis 1).

Finally, in a control analysis (Fig. 2C and Supporting Infor-
mation Table 2), we ascertained that low-level visual cortex
exhibited a contralateral visual field bias. This result is expected

for low-level visual areas that are retinotopically organized
[Grill-Spector andMalach, 2004;Wandell et al., 2007].

Classification of Objects Across Locations

In a second set of analyses, we investigated whether
activation patterns in category-selective regions allow
decoding of object information across locations. For this,
we trained a classifier to differentiate between activation
patterns evoked by exemplars presented in one visual
hemifield (Fig. 3A) and tested the classifier on activation
patterns evoked by exemplars presented in the other
hemifield.

Our results indicate that category-selective regions con-
tained information about categories across locations. One-
sampled t-tests indicated the significance of this effect for
the preferred category in all category-selective regions (all
P < 1 � 10�8, Fig. 3B, light gray bars and Supporting In-
formation Table 3) and for nonpreferred categories in
nearly all regions (except TOS, all P < 1 � 10�4, Fig. 3B,
dark gray bars, Supporting Information Table 3). A control
analysis in low-level visual cortex ascertained that catego-
ries were not encoded across hemifield, as was to be
expected from the retinotopic structure of those areas
(Fig. 3C and Supporting Information Table 4).

Our results further indicate that activity patterns in cate-
gory-selective regions allowed the read-out of more infor-
mation about the preferred than about the nonpreferred
category (Fig. 3C). Thus, category-selective regions retain
category preference to the same category in spite of changes
in object location. Paired t-tests comparing decoding accu-
racies for preferred and nonpreferred categories in each cat-
egory-selective region ascertained the significance of this
effect (all P < 0.005, Supporting Information Table 5).

Figure 5.

Structure in the representation of nonpreferred categories in

category-selective cortex. A: The matrix represents a schema of

decoding accuracy for all possible category pair discriminations.

For each region, we excluded all discriminations involving the

preferred category (e.g., here all discriminations involving faces

in FFA, indicated in blue). Then, we averaged decoding accura-

cies depending on whether they were the results of discrimina-

tion between exemplars from the same category (by red color)

or the results of discrimination between exemplars from differ-

ent categories (green). Note that the matrix is symmetric across

the diagonal. Further, the diagonal is undefined as discriminations

between one and the same object exemplar were not carried

out (indicated in white). B: Location-tolerant information about

nonpreferred categories in category-selective regions. In nearly

all regions, classifications involving exemplars from different cat-

egories resulted in higher decoding accuracies than classifications

involving exemplars from the same category. This directly indi-

cates a category structure in nonpreferred responses in cate-

gory-selective regions. The gray striped line indicates

classification chance level (50%). [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]
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Next, we investigated whether the encoding of object
exemplars in category-selective regions is structured by
category for both preferred and nonpreferred categories.

That is, we determined whether activation patterns of two
object exemplars belonging to the same category are more
similar to each other than activation patterns of two exem-
plars belonging to different categories. We visualized the
structure of activation patterns in category-selective
regions using MDS. The results are shown in Figure 4 and
Supporting Information Figure 4. Visual inspection shows
that object exemplars for both preferred as well as nonpre-
ferred categories cluster together. This supports the notion
that activation patterns in category-selective regions are
structured by category. We then tested for category struc-
ture specifically in the nonpreferred responses in category-
selective regions. Thus, we asked whether classifications
involving exemplars from different categories result in
higher decoding accuracies than pair-wise classifications
involving exemplars from the same category (Fig. 5A). For
this analysis, we excluded any decoding accuracies of dis-
criminations involving exemplars of the preferred category
(e.g., exclusion of faces for FFA and places for PPA). Thus,
observed differences cannot be merely driven by the pre-
ferred category. In all regions, except FBA and TOS, classi-
fications involving exemplars from different categories
resulted in higher decoding accuracies than classifications
involving exemplars from the same category (all P < 1 �
10�3, Fig. 5B, green bars for different-category classifica-
tion and red for same-category classifications, Supporting
Information Table 6). This directly indicates a category
structure in the activation patterns carried by nonpreferred
responses in category-selective regions.

Classification of Location Across Objects

The contralateral visual field bias observed in high-level
ventral visual areas suggests that location information
might be present in these areas. Thus, in a third analysis,
we directly investigated the encoding of location in ventral
visual cortex in a spatially unbiased fashion. We used a
novel surface-based searchlight method to determine
whether local activation patterns are predictive of the loca-
tion of objects independent of the specific exemplar

Figure 6.

Location classification across objects. A: To reveal location infor-

mation, a classifier was trained to distinguish between two loca-

tions of a specific exemplar. Then, the classifier was then tested

on the two locations of a different exemplar. B: Results of loca-

tion classification across objects in high-level visual cortex. All

regions investigated contained location information. Interestingly,

regions on the lateral-occipital surface of the cortex contained

more location information than regions on the ventral-temporal

surface. Results represent the mean decoding accuracy � SEM.

The red line indicates classification chance level (50%). C:

Results of location classification across objects in low-level visual

areas V1, V2, and V3. As expected, all low-level visual areas

showed nearly perfect location classification. Results represent

the mean over ROIs � SEM. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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presented (Fig. 6A). Results are shown in Figure 7. Signifi-
cant location information was present throughout the ven-
tral visual pathway. This result was ascertained by a ROI
analysis (Fig. 6B). One-sample t-tests of decoding accuracy
for location classification against chance revealed that all
category- and object-selective regions with the exception of
FBA contained location information (all P < 1 � 10�3,
Supporting Information Table 7). A control analysis in
low-level visual areas yielded near-perfect classification
performance for location decoding (Fig. 6C and Support-
ing Information Table 8), as expected for retinotopically
organized areas. Overall, these results indicate the wide-
spread encoding of location information in both low- and
high-level visual areas in the ventral visual stream.

Next, we investigated whether high-level ventral visual
regions differ systematically in the amount of location in-
formation they contain across positions on the cortical sur-
face [Hasson et al., 2003; Schwarzlose et al., 2008]. For this,
we determined whether regions located on the lateral-occi-
pital surface of cortex contain more information than
regions located on the ventral-temporal surface. Thus, we
conducted four paired t-tests on decoding accuracies for
location classification (Fig. 6A) for four region pairs. Each
region pair was defined by the same category preference

with one region on each surface (ventral-temporal: FFA,
FBA, PPA, FUS; lateral-occipital: OFA, EBA, TOS, LO).
The results are reported in Supporting Information Table 9
and visualized in Figure 6B. For all region pairs, except
FUS and LO, we found significantly more location infor-
mation in lateral-occipital regions than in ventral-temporal
regions (all P < 1 � 10�3). This indicates a systematic dif-
ference in the distribution of location information in the
ventral visual stream.

DISCUSSION

Our results provide a systematic account of two major
principles of object representation in the human brain: cat-
egory preference and location encoding. The results of the
set of analyses we have performed are as follows: First,
category-selective regions contained information about
objects from their preferred and, importantly, also nonpre-
ferred categories tolerant to changes in location in a struc-
tured fashion. Second, location information was present
widely in high-level ventral visual cortex. A systematic
difference was observed in the extent of location informa-
tion across the cortical surface: Regions on the lateral-occi-
pital regions contained more location information than

Figure 7.

Surface-based searchlight analysis of location information across

objects in ventral visual cortex. We explored the encoding of

location information in ventral visual cortex in a spatially

unbiased fashion. Location information was present widely in the

ventral visual pathway (P < 0.01, FDR-corrected separately for

each hemisphere). Note that location information in parietal and

frontal cortex could not be assessed, because it was not cov-

ered in the MRI acquisition. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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ventral-temporal regions. Third, category-selective regions
exhibited a contralateral visual field bias.

Category Preference and Location Tolerance

Prior studies demonstrated that ventral visual cortex
contains information about object category tolerant to
changes in object location [Carlson et al., 2011; Cichy et al.,
2011a; Sayres and Grill-Spector, 2008; Schwarzlose et al.,
2008; Supporting Information Analysis 2]. We extend these
findings in two ways.

First, we investigated location-tolerance of responses in
category-selective regions separately for preferred and
nonpreferred categories. Thus, we established not only
that category-selective regions contain location-tolerant in-
formation, but also that the amount of such information is
larger for preferred than for nonpreferred categories. This
strengthens the notion that category is a major principle of
object representation [Op de Beeck et al., 2008b].

Interestingly, this result is in apparent contrast to a
recent study by Yue et al. [2011] in which the authors
argued that category preference can be reverted by
changes in low-level features of the visual stimulus. One
difference between the study of Yue et al. [2011] and ours
is the methodology by which category preference was
investigated. Yue et al. [2011] investigated category prefer-
ence by mean blood oxygenated level dependent (BOLD)
activation, whereas we investigated category preference by
encoding of information in fMRI activation patterns. Thus,
our results suggest that the encoding of object category in
category-selective regions might be independent of BOLD
activation caused by changes in low-level features of the
visual stimulus.

A possible explanation for the independence of object
encoding from mean activation might be given by
response properties of neurons in inferior temporal cortex
(IT) in monkey. Although the absolute magnitude of the
neuronal response of an IT neuron is typically modulated
by changes in object location, the neurons maintain their
rank order [DiCarlo and Maunsell, 2003; Ito et al., 1995;
Logothetis and Sheinberg, 1996; Op De Beeck and Vogels,
2000; Tovee et al., 1994]. Thus, although the average single
neuron activation in a region might be modulated by
changes in object location, the neuronal activation pattern
across neurons might encode objects independent of abso-
lute activation [Li et al., 2009]. This explanation might
carry over from neuronal activation patterns to fMRI acti-
vation patterns: Although mean BOLD responses in cate-
gory-selective regions might be modulated or even
reversed by changes in low level features, BOLD activation
patterns may allow the reliable read-out of object category.
It remains an intriguing question for further research to
what extent changes in viewing conditions preserve cate-
gory preference when category preference is measured by
mean activation, or when it is measured by encoding in
activation patterns.

Our results indicate location-tolerant, not location-invari-
ant coding of objects in high-level visual cortex. Activation
patterns evoked by objects in different locations are similar
enough to allow above-chance decoding, but the extent of
read-out of object information depends on the object loca-
tion in the visual field [Cichy et al., 2011a; Kravitz et al.,
2010; Schwarzlose et al., 2008]. This difference in read-out
is open to interpretation. For one, it might indicate that
high-level visual regions code objects in a location-depend-
ent manner [Kravitz et al., 2010]. Alternatively, it might
indicate that decoding of object information within loca-
tion reflects both relevant shape information and irrelevant
low-level features, where the latter might not be behavior-
ally relevant [Cichy et al., 2011a,b; Williams et al., 2007].
Future studies using transcranial brain stimulation or
lesion studies might be able to disambiguate these
possibilities.

A plausible neural basis for location-tolerant object
encoding could be neurons with large receptive fields that
cross the vertical meridian. Electrophysiological studies
have indicated that neurons in monkey inferotemporal cor-
tex, i.e., the homologue to human object sensitive cortex,
have receptive fields that range in size typically from 5 to
30 degrees visual angle [Boussaoud et al., 1991; Desimone
et al., 1984; DiCarlo and Maunsell, 2003; Gross et al., 1969,
1972; Kobatake and Tanaka, 1994; Li et al., 2009; Op de
Beeck and Vogels, 2000; Richmond et al., 1983; Tovee
et al., 1994]. Thus, receptive fields in high-level visual cor-
tex in humans would be large enough to encompass our
stimuli in both locations.

Second, we extend prior studies by showing that non-
preferred responses in nearly all category-selective regions
encode information tolerant to changes in location. For
one, this suggests that category-selective regions partici-
pate in the processing of nonpreferred categories [Down-
ing et al., 2007; Haxby et al., 2001]. Location-tolerance is a
crucial property of object representations for successful
object recognition [DiCarlo and Cox, 2007; Riesenhuber
and Poggio, 2002], and here we show that nonpreferred
responses pass this test. However, an opposing interpreta-
tion is that nonpreferred responses in category-selective
regions are purely epiphenomenal [Spiridon and Kanw-
isher, 2002]. The coordinate frame of object representations
in high-level ventral visual cortex is unknown for both
preferred and nonpreferred responses. Thus, epiphenome-
nal responses could appear in the same location-tolerant
coordinate frame as preferred responses. Further research
is needed to assess the exact role and coordinate frame of
preferred and nonpreferred responses in category-selective
regions.

Further, the idea of a role for nonpreferred responses in
object recognition stands in contrast to two recent studies.
First, Tsao et al. [2003, 2006] conducted monkey studies
showing that neurons in patches of cortex which exhibit
category preference for faces in fMRI nearly exclusively
prefer faces to other stimuli when assessed electrophysio-
logically. However, characterizing the representational
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scheme of a region by the preferred stimulus of neurons
may underestimate the amount of information present in
nonpreferred responses. Future experiments may deter-
mine whether distributed neuronal activation patterns in
face-selective regions contain information about nonpre-
ferred responses. Second, a recent study showed that the
disruption of the function of category-selective regions by
transcranial magnetic stimulation selectively impaired the
recognition of the preferred category, whereas leaving the
recognition of nonpreferred categories intact [Pitcher et al.,
2009]. However, nonpreferred responses in category-selec-
tive regions may only be behaviorally relevant in the pres-
ence of attention [Reddy and Kanwisher, 2007] or depend
on task demands. Studies which systematically investigate
the relation between attentional state, behavior, and encod-
ing in category-selective regions may help to answer these
open questions.

Last, we found a category structure in nonpreferred
responses in category-selective regions: Activation patterns
evoked by single exemplars of nonpreferred categories
clustered together according to category. This category
structure could be used by the brain for object exemplar
categorization: Objects could be classified based on the
representational distance of the evoked brain pattern to
established category representations. Thus, our result
strengthens the notion of category membership as a domi-
nant property of object representation in the ventral visual
stream [Kriegeskorte et al., 2008].

Taken together, our results further corroborate an inter-
mediate position [O’Toole et al., 2005] between strictly dis-
tributed [Haxby et al., 2001] and strictly modular accounts
[Spiridon et al., 2006] of the representational scheme in
category-selective regions.

Object-Tolerant Location Information

in the Ventral Visual Stream

By using a surface-based searchlight technique, we found
widespread and strong category-tolerant location informa-
tion throughout ventral visual cortex. A classical volumet-
ric searchlight analysis yielded comparable results
(Supporting Information Analysis 3 and Supporting Infor-
mation Fig. 5). Also, a ROI analysis corroborated the encod-
ing of location in high-level ventral visual cortex. Thus, our
results support a growing body of evidence for encoding of
location information in the ventral visual pathway [Carlson
et al., 2011; Fischer et al., 2011; Schwarzlose et al., 2008].

Importantly, the encoding of object location in high-level
ventral visual cortex may play several different roles in
object recognition. Location information may be necessary
to allow separate coding of multiple objects in parallel [Li
et al., 2009] and to encode the relative position of object
parts [Edelman and Intrator, 2000; Missal et al., 1999]. Con-
versely, the lack of location information in high-level ventral
visual cortex may create a binding problem [Riesenhuber
and Poggio, 1999; Treisman, 1999]. Thus, the joint encoding

of location and object identity information in the same corti-
cal region might be beneficial for object recognition.

Our finding of location information in high-level ventral
visual cortex is also compatible with the view that high-
level ventral visual cortex might be governed by a weak
retinotopic organization [Op de Beeck et al., 2008b]. In
fact, high-level ventral visual cortex has been found to
partly overlap with retinotopic cortex [Arcaro et al., 2009;
Brewer et al., 2005; Larsson and Heeger, 2006; Sayres and
Grill-Spector, 2008]. However, the exact extent of retino-
topic organization remains unclear. Interestingly, the pres-
ence of location information in the ventral visual stream
constitutes a minimal and necessary, although not suffi-
cient requirement for a potential retinotopic organization.
Thus, our results suggest that the ventral visual cortex
might be retinotopically organized beyond the regions in
which a retinotopic organization has been demonstrated
by retinotopic mapping.

Interestingly, location information was not encoded
equally strongly across high-level ventral visual cortex:
Lateral-occipital regions contained more location informa-
tion than ventral-temporal regions. A recent study found
similar sensitivity differences to object location for loca-
tions across the horizontal meridian across the cortical sur-
face in high-level ventral visual cortex [Schwarzlose et al.,
2008]. This suggests that lateral-occipital and ventral-tem-
poral regions may play systematically different computa-
tional roles in visual object processing [Hasson et al.,
2003]. Future studies might resolve the putatively different
computational roles of regions on the lateral-occipital ver-
sus ventral-temporal surface in more detail.

Location-Dependent Category Representation

We found a contralateral visual field bias in category-
selective regions and LOC (Supporting Information Analy-
sis 1 and Supporting Information Fig. 2). This result con-
curs with prior studies [Grill-Spector et al., 1998; Hemond
et al., 2007; MacEvoy and Epstein, 2007; McKyton and Zoh-
ary, 2007; Niemeier et al., 2005; Sayres and Grill-Spector,
2008]. Thus, category-selective regions implicitly contain
location information. A simple comparison of information
content in the two hemispheres indicates the location of
the object. This finding is in coherence with the discovery
of location information independent of the object through-
out the ventral visual stream. It strengthens the notion of
ventral visual cortex as containing information that to
some extent is constrained by location [Kravitz et al., 2010].
Importantly though, the presence of a visual field bias or a
constraint by location does not preclude the concurrent
presence of location-tolerant category representations.

CONCLUSIONS

In summary, the implications of our results are the fol-
lowing. By quantifying the extent to which category
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determines activation patterns in ventral visual cortex, we
support the hypothesis of category-preference as a princi-
ple of object representation in high-level ventral visual cor-
tex. However, this principle is not absolute. Our results
lend plausibility to a role of nonpreferred responses in cat-
egory-selective regions as well. Moreover, we further
strengthen the recently formed link between high-level
ventral visual cortex and location information. In conjunc-
tion, our results indicate that both category membership
and location in the visual field determine the representa-
tion of objects in the ventral visual stream.
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