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The past decade has seen much progress in the unraveling of the 
 neuronal mechanisms supporting human object recognition, with 
studies corroborating each other across species and methods1–5. 
Object recognition involves a hierarchy of regions in the occipital 
and temporal lobes1,4,6–8 and unfolds over time9–11. However, com-
paring data quantitatively from different imaging modalities, such as 
magneto- and electroencephalography (MEG/EEG) and functional 
magnetic resonance imaging (fMRI) within and across species3,12–15 
remains challenging, and we still lack fundamental knowledge about 
where and when in the human brain visual objects are processed.

Here we demonstrate how the processing of objects in the human 
brain unfolds in time, using MEG, and space, using fMRI, within 
the first few hundred milliseconds of neural processing1,16. First, 
by applying multivariate pattern classification17–20 to human MEG 
responses to object images, we show the time course with which 
individual images are discriminated by visual representations19,21–23. 
Whereas individual images were best linearly decodable relatively 
early, membership at the ordinate and superordinate levels became 
linearly decodable later and with distinct time courses. Second, using 
representational similarity analysis19,24,25, we define correspondences 
between the temporal dynamics of object processing and cortical 
regions in the ventral visual pathway of the human brain. By compar-
ing representational dissimilarities across MEG and fMRI responses, 
we distinguished MEG signals reflecting low-level visual processing 
in V1 from signals reflecting later object processing in IT. Further, 
we identify V1 and IT as two differentiable cortical sources of persist-
ent neural activity during object vision. This suggests that the brain 
actively maintains representations at different processing stages of the 
visual hierarchy. Lastly, using previously reported single-cell record-
ings in macaque26, we extend our approach across species, finding 
that human MEG responses to objects correlated with the patterns of 
neuronal spiking in monkey IT. This work resolved dynamic object 
processing with a fidelity that has, to our knowledge, previously not 
been shown by offering an integrated space- and time-resolved view 

of the occipitoventral visual pathway during the first few hundred 
milliseconds of visual processing.

RESULTS
Human participants (n = 16) viewed images of 92 real-world 
objects3,26 while we acquired MEG data (Fig. 1a and Supplementary 
Fig. 1a). The image set comprised images of human and nonhuman 
faces and bodies, as well as natural and artificial objects. Images were 
presented for 500 ms every 1.5–2s. To maintain attention, partici-
pants performed an object-detection task on a paper clip image shown 
on average every four trials. Paper clip trials were excluded from  
further analysis.

We extracted and preprocessed peri-stimulus MEG signal from 
−100 ms to 1,200 ms (1 ms resolution) with respect to stimulus onset. 
For each time point, we used a support vector machine (SVM) clas-
sifier to classify pairwise between all conditions (object images)  
(Fig. 1b). The results of the classification (percentage decoding accu-
racy, 50% chance level) were stored in a 92 × 92 decoding matrix, 
indexed by the 92 conditions. Thus, each cell in the matrix indicates 
the decoding accuracy with which the classifier distinguishes between 
two images. This matrix is symmetric across the diagonal, with the 
diagonal undefined. Results were averaged across two independent 
sessions. Figure 1c shows example matrices averaged across partici-
pants (see also Supplementary Movie 1). For all time points, signifi-
cance was determined non-parametrically at the participant level by 
a cluster-based randomization approach27,28 (cluster-defining thresh-
old P < 0.001, corrected significance level P < 0.05). 95% confidence 
intervals for mean peak latencies and onsets (reported in parentheses  
throughout the Results) were determined by bootstrapping the 
 participant sample.

MEG signals allow pairwise decoding of individual images
What is the time course with which individual images of objects are 
discriminated by visual representations? We found that MEG signals 
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Resolving human object recognition in space and time
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A comprehensive picture of object processing in the human brain requires combining both spatial and temporal information about 
brain activity. Here we acquired human magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI) 
responses to 92 object images. Multivariate pattern classification applied to MEG revealed the time course of object processing: 
whereas individual images were discriminated by visual representations early, ordinate and superordinate category levels 
emerged relatively late. Using representational similarity analysis, we combined human fMRI and MEG to show content-specific 
correspondence between early MEG responses and primary visual cortex (V1), and later MEG responses and inferior temporal 
(IT) cortex. We identified transient and persistent neural activities during object processing with sources in V1 and IT. Finally, 
we correlated human MEG signals to single-unit responses in monkey IT. Together, our findings provide an integrated space- and 
time-resolved view of human object categorization during the first few hundred milliseconds of vision.
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could resolve brain responses on the single-image level19, for up to 
92 different objects. For every time point, we averaged across all cells 
of the MEG decoding matrix, yielding a time course of grand aver-
age decoding accuracy across all images (Fig. 1d). We calculated the 
onset of significance, the time point for which objects were first dis-
criminated by visual representations, and the peak latency, the time 
point when visual representations of each individual image were most 
distinct in terms of linear separability. We report onset and mean peak 
latency with 95% confidence intervals in parentheses (for overview 
with all data, see Supplementary Table 1).

Before and just after stimulus presentation, grand average decoding 
accuracy fluctuated around chance level (50%). The curve rose sharply 
and reached significance at 48 ms (45–51 ms), followed by a peak at 102 ms  

(98–107 ms) and a gradual decline (Fig. 1d). Notably, we observed sig-
nificant decoding accuracy of individual images within each of the six 
subdivisions of the image set (human and nonhuman faces and bodies, 
natural and artificial objects; Fig. 1e) 51–61 ms after stimulus onset, 
followed by peaks at 99–112 ms (Supplementary Table 1b). Thus, multi-
variate analysis of MEG data revealed the temporal dynamics of visual 
content processing in the brain even at the level of individual images19.

Time course of category decoding
To determine when visual representations discriminate object  
membership at superordinate, ordinate and subordinate categoriza-
tion levels, we compared decoding accuracy within and between the 
relevant partitions of the MEG decoding matrix (Fig. 2). The resulting  
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Figure 1 Decoding of images from MEG signals. (a) Image set of 92 images3,26 of different categories of objects. (b) Multivariate analysis of MEG data.  
(c) Examples of 92 × 92 MEG decoding matrices (averaged over participants, n = 16). (d) Time course of grand total decoding was significant at 48 ms 
(45–51 ms), with a peak at 102 ms (98–107 ms; horizontal error bar above peak shows 95% confidence interval). (e) Time course of object decoding 
within subdivisions. The left panel illustrates the separately averaged sections of the MEG decoding matrix (color-coded), the right panel the corresponding 
decoding time courses. Peak latencies and onsets of significance are listed in Supplementary Table 1b. Rows of asterisks indicate significant time points 
(n = 16, cluster-defining threshold P < 0.001, corrected significance level P < 0.05). The gray vertical line indicates onset of image presentation.
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measure (difference in decoding accuracy)  
indicates both linear separability and clus-
tering of objects according to subdivision  
membership. Peaks in this measure represent 
time points at which the brain has untangled 
visual input such that relevant information 
about object membership is explicitly encoded. 
We determined significance as before by sign 
permutation tests (n = 16, cluster-defining 
threshold P < 0.001, corrected significance 
level P < 0.05) and 95% confidence intervals 
for peak latencies and onsets by bootstrapping 
the participant sample (n = 16).

We found that visual representations dis-
criminated objects by animacy21,23 with a peak 
at 157 ms (152–302 ms) (Fig. 2a). Similarly, 
visual representations discriminated objects by 
naturalness with a peak at 122 ms (107–254 ms) 
(Fig. 2b). Multidimensional scaling (MDS)29,30 
illustrated the main structure in the MEG 
decoding matrix at peak latency: clustering of 
objects into animate and inanimate, as well as 
natural and artificial.

Within the animate division, faces and  
bodies clustered separately. This suggested that 
membership to categorical divisions below the 
animate/inanimate distinction might be dis-
criminated by visual representations22,31–35. 
Indeed, we found that the distinction between 
faces and bodies was significant at 56 ms (46–74 
ms), with a clear peak at 136 ms (131–140 ms) 
(Fig. 2c). MDS at the 136-ms peak (Fig. 2c) 
showed a division between faces and bodies, dominated by nonhu-
man bodies versus the other conditions. At the subordinate level, 
we found that visual representations distinguished bodies by species 
with an onset at 75 ms (64–113 ms) and a peak at 170 ms (104–252 
ms), and the MDS showed a clear species-specific clustering of bod-
ies (Fig. 2d). We also observed a significant difference in decoding 
accuracy for human versus nonhuman faces starting at 70 ms (54–
74 ms), followed by two prominent peaks at 127 ms (122–133 ms)  
and 190 ms (175–207 ms, calculated on the time window starting  

at the trough between the two peaks at 156 ms and 1,200 ms)  
(Fig. 2e). An MDS at the first peak illustrated the effect, with a perfect 
separation of faces along the species border.

For photographs of real-world objects, category membership 
is often associated with differences in low-level image properties. 
Thus, linear separability of objects by category may be achieved on 
the basis of low-level image property representations. However, an 
analysis testing the degree to which classifiers generalized across 
particular object images showed that the discrimination of category 
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Figure 2 Time course of decoding category 
membership of individual objects. (a–e) We 
decoded object category membership for  
(a) animacy, (b) naturalness, (c) faces versus 
bodies, (d) human versus nonhuman bodies 
and (e) human versus nonhuman faces. The 
difference of within-subdivision (dark gray, left 
panel) minus between-subdivision (light gray, 
left panel) averaged decoding accuracies is 
plotted in the middle panel over time. Peaks 
in decoding accuracy differences indicate time 
points at which the ratio of dissimilarity within 
a subdivision to dissimilarity across subdivision 
is smallest. n = 16; asterisks, vertical gray line 
and error bars same as in Figure 1. Statistical 
details in Supplementary Table 1c. The right 
panel illustrates the structure in the MEG 
decoding matrix at peak latency revealed by 
the first two dimensions of the MDS (criterion: 
metric stress, 0.24 for a–c,e, 0.27 for d).  
“Dec. acc.” indicates decoding accuracy.
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membership was not solely determined by image-specific properties 
(Supplementary Fig. 2).

Comparing peak-to-peak latency differences (Figs. 1 and 2) using 
bootstrapping (n = 16, P < 0.05, Bonferroni-corrected), we found that 
images were discriminated earlier at the level of individual images than 
at higher categorization levels (all P < 0.001, except for human versus 
nonhuman body; for details, see Supplementary Table 2). In a behavio-
ral experiment, new participants were asked to perform same-different  
image classification in the context of different categorization levels  
(identity, subordinate to superordinate classification) (Supplementary  
Fig. 1c). We found significant Pearson’s correlations by bootstrapping  
(n = 16) between peak decoding accuracy and reaction times (R = 0.53,  
P = 0.003) and correctness (R = −0.49, P = 0.012) (Supplementary Fig. 3).

Taken together, multivariate analysis of MEG signals revealed the 
time course with which membership of individual objects at different 
categorical levels was linearly decodable. Our results complement 
previous work on rapid object detection in go/no-go tasks21,23 and 
provide a content-based analysis of the time course with which object 
information is processed19.

Transient and persistent neuronal activity
The dynamics of the decoding time courses above suggested highly 
variable and transient neural activity as their source. As neuronal 
signals propagate along the ventral visual stream, different image 
properties appear to be processed at subsequent time points. However, 
the previous analyses did not allow us to determine the existence of 
persistent neural activity during the course of object processing. Such 
persistent neural activity could maintain the results of a particular 
neural processing stage for later use.

Intuitively, if neuronal activity persists over time, MEG signals 
should be similar across time as well. To search for such similarities, 
we trained an SVM classifier at one time point (tx) and tested at other 
time points (ty) (Fig. 3). Conducting all pairwise discriminations 
between objects, we obtained a 92 × 92 MEG decoding matrix for 

every pair of time points (tx,ty). We then repeated the process across 
all pairs of time points, resulting in a four-dimensional image-image-
time-time decoding matrix. Averaging across the first two dimensions 
yielded a time-time decoding matrix (Fig. 3b,c).

As expected, some neural activity during object processing was 
transient: the classifier generalized best to neighboring time points 
and performed poorly for distant time points. This is illustrated by the 
highest decoding accuracy along the diagonal and the sharp drop of 
decoding accuracy away from the diagonal (Fig. 3b), depicted as a high 
and steep crest of decoding accuracy (Fig. 3c). Notably, we also found 
evidence for persistent neural activity. First, the classifier generalized 
well for the time-point combination of ~100 ms and ~200–1,000 ms.  
As this effect was clearly circumscribed in time and persisted beyond 
the offset of image presentation at 500 ms, it is unlikely that it  
merely reflected constant passive influx of information during 
image presentation. This suggests that the brain actively maintains 
visual representations in early stages of the visual processing hierar-
chy, potentially as memory for low-level visual features36. Second, 
between ~250 ms and ~500 ms, the classifier produced a broader 
diagonal. This indicated that neural activity was similar across these 
time points, suggesting that a stable representation of objects in later 
stages of visual processing hierarchy is kept online.

Statistical testing (Fig. 3d, sign permutation test, n = 16, cluster-
defining threshold P < 0.0001, corrected significance level P < 0.05) 
indicated widespread similarity of neural activity. However, the fact 
that this is not limited to particular time-point combinations may 
indicate either neural activity actively maintained at all cortical 
processing levels or a passive response of the brain to the constant 
influx of visual information during the presence of the stimulus.

In sum, across-time analysis of the dynamics in visual representa-
tions revealed both transient and persistent neuronal processing of 
objects. The presence of persistent neuronal activity at well-delineated 
time point combinations may indicate active maintenance of visual 
representations at different processing stages.
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Figure 3 Dynamics of visual representations across time. (a) MEG  
brain responses were extracted for time points tx and ty after stimulus  
onset. An SVM was trained to distinguish between images by visual  
representations at time point tx and tested on brain responses to the same  
images at a different time point ty. We conducted all pairwise object  
classifications and averaged the overall decoding accuracy. Finally, the  
averaged decoding accuracy was stored in the element (tx,ty) of a  
time-time MEG decoding matrix. The process was repeated for all pairs  
of time points. (b,c) Time-time decoding matrix averaged across  
participants. The gray lines indicate onset of image presentation.  
The white dotted rectangle indicates classifier generalization for the  
time-point combination ~100 ms and 200–1,000 ms; the dotted ellipse  
indicates classifier generalization by the broadened diagonal.  
(d) Significance was assessed by sign-permutation tests (n = 16,  
cluster-defining threshold P < 0.0001, corrected significance level P < 0.05). Dark red indicates elements within the significant cluster.
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Resolving object recognition in space and time
What are the cortical sources of the MEG signals that discriminate 
objects? Given that V1 and IT process different aspects of the images6, 
we expected MEG signals originating from these two cortical areas 
to differ: in other words, V1 and IT responses to individual objects 
should differ in their dissimilarity relations3, resulting in distinct 
patterns over time in the MEG decoding matrices. Here we used rep-
resentational similarity analysis24,25 to show when representations 
extracted with MEG were comparable to those extracted with fMRI 
in human V1 and IT (Fig. 4a).

After adapting the MEG stimulation protocol to the specifics of 
fMRI (Supplementary Fig. 1b), we repeated the experiment with 
the same images in the same participants while acquiring fMRI data. 
We estimated individual (92) object image-related brain responses by 
fitting a general linear model. We then extracted voxel values from a 
region of interest (V1 or IT) to form a pattern vector (Fig. 4a). The 
resulting 92 pattern vectors were subjected to pairwise Pearson’s cor-
relation and then ordered into a 92 × 92 similarity matrix indexed by 
image condition. We converted matrix elements from R (similarity) 
to 1 − R (dissimilarity) to make the matrices directly comparable 
to the MEG decoding accuracy matrices. The above process pro-
duced two fMRI dissimilarity matrices, one for V1 and one for IT,  
for each participant.

Using these two fMRI matrices, we first successfully reproduced 
a main previous finding3: stronger representation of animacy in IT 
than in V1, shown by MDS, hierarchical clustering and quantitative 
testing (Supplementary Fig. 4). For further analysis, we computed 
participant-averaged fMRI matrices for both human V1 and IT. We 
then evaluated the extent of similar representations between fMRI and 
MEG by computing Spearman’s rank-order correlations between fMRI 
dissimilarity matrices (separately for V1 and IT) and participant-
specific MEG decoding accuracy matrices (separately for each time 
point) (Fig. 4b). We found that MEG signals correlated with fMRI 
dissimilarity matrices in human V1 and IT with different time courses 
(Fig. 4c, sign-permutation test, cluster-defining threshold P < 0.0001,  

corrected significance level P < 0.05, 95% confidence intervals by 
bootstrapping). The V1 correlation time course peaked early, at 101 ms  
(84–109 ms), whereas the IT time course peaked later, at 132 ms  
(129–290 ms) (for onset of significance see Supplementary Table 1d). 
The difference in peak-to-peak latency was significant (n = 16, sign-
permutation test, P = 0.016). Importantly, comparing the V1 and IT 
time course directly (Fig. 4d), we found that MEG signals correlated 
more with V1 than with IT early (peak at 93 ms (79–102 ms)) and 
more with IT than with V1 later (peak at 284 ms (152–303 ms)).

Notably, the correlation of MEG with human IT was also present 
within each of the six subdivisions of the image set (Supplementary 
Fig. 5). Correlating MEG with previously reported fMRI data from 
human IT3 yielded comparable effects (Supplementary Fig. 6)—
namely, a peak at 158 ms (152–300 ms)—reinforcing the validity and 
generalizability of our results. Additionally, the correlation of MEG to 
V1 was specific to the stimulated portion of V1: an immediately adja-
cent V1 region corresponding to an unstimulated portion of the visual 
field (3–6° visual angle) showed significantly weaker correlation (sign 
permutation test, n = 16, cluster-defining threshold P < 0.001, cor-
rected significance level P < 0.05) than central V1 (Supplementary 
Fig. 7). In summary, we have demonstrated that temporal dynamics as 
measured by MEG can be mapped onto distinct early and late human 
cortical regions along the ventral visual stream using representational 
similarity analysis.

Relating MEG and fMRI object signals across time
The above MEG-fMRI representational similarity analysis naturally 
extends to include the MEG time-time decoding matrices constructed 
earlier (Fig. 3). This analysis allows identifying the cortical sources 
that have persistent neural activity. We therefore correlated the fMRI 
dissimilarity matrices of V1 and IT with the MEG 92 × 92 decoding 
matrices obtained for each pair of time points (tx,ty) (Figs. 3a and 5a).  
The results (Fig. 5b,c, sign permutation test, n = 16, cluster-defining 
threshold P < 0.0001, corrected significance level P < 0.05) demon-
strated that neural activity for the time point combinations of ~100 ms  
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and ~200–1,000 ms correlated with V1 dis-
similarity matrices. In contrast, neural activity  
between ~250 ms and ~500 ms correlated 
with IT dissimilarity matrices. Notably, this 
was also true when comparing the correla-
tions directly (Fig. 5d).

In sum, by combining fMRI and MEG, 
we identified V1 and IT as distinct cortical 
sources of persistent neural activity during 
visual object perception. This suggests that the 
visual system actively maintains neural activity  
at different levels of visual processing.

Relating human MEG to spiking activity 
in monkey IT
Previous research3 has shown that object rep-
resentations in IT are comparable in monkeys 
and humans. Here, using representational 
similarity analysis, we related the dynamics 
in human MEG to the pattern of activity in 
monkey IT (as measured electrophysiologi-
cally for the same image set26) (Fig. 6a). Brain responses in human 
MEG and monkey IT were significantly correlated (sign permuta-
tion test, n = 16, cluster-defining threshold P < 0.001, corrected 

 significance level P < 0.05, 95% confidence intervals by bootstrap-
ping), first at 66 ms (56–71 ms) and peaking at 141 ms (132–292 ms)  
(Fig. 6b). MDS at peak latency (Fig. 6c) revealed an arrangement 

strongly dominated by human faces. However, 
significant correlations (sign permutation test, 
n = 16, cluster-defining threshold P < 0.001, 
corrected significance level P < 0.05) were 
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Figure 5 Relating MEG and fMRI signals across 
time. (a) Decoding matrices (92 × 92) were 
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order correlation) with the fMRI dissimilarity 
matrices for V1 and IT. The resulting correlation 
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time MEG and fMRI correlation matrix for V1 
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(n = 16, cluster-defining threshold P < 0.0001, 
corrected significance level P < 0.05). Neural 
activity for the time point combinations of 
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electrophysiological signals in monkey IT. 
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also present within all subdivisions of the image set (Fig. 6d and 
Supplementary Table 1g). These results corroborated and extended 
the evidence for a common representational space for objects in  
monkeys and humans3.

DISCUSSION
Using multivariate pattern classification methods18–20 and representa-
tional similarity analysis3,24,25 on combined human MEG-fMRI data, 
we have demonstrated how object recognition proceeds in space and 
time in the human ventral visual cortex. First, we found that whereas 
individual images were discriminated early, membership to ordinate 
and superordinate levels was discriminated later19. Notably, we identi-
fied neural activity that was either persistent or transient during the 
first few hundred milliseconds of object processing. Second, using 
representational similarity analysis, we combined human fMRI and 
MEG to show content-specific correspondence between early MEG 
responses and V1 fMRI responses, and later MEG responses and IT 
fMRI responses. Extending this analysis, we located the sources of dif-
ferentiable persistent neural activity in V1 and IT. Last, we extended 
the representational similarity analysis across species3,25 by showing 
that human MEG signals can be related to spiking activity in macaque 
IT. We thus extended the evidence for a common representational 
space for objects in monkeys and humans to the time domain.

The time course of object processing
Applying multivariate pattern classification to MEG data, we found 
that visual representations discriminated individual images19 (peak 
at 102 ms) and then proceeded to classify them into categories. We 
found the peak latencies for classification of naturalness (122 ms) 
and animacy (157 ms) to match previous reports of neural response 
latencies in human and monkey IT2,11,23,37. The broad confidence 
intervals for peak latency for animacy and naturalness may indicate 
that object information is sustained online for more in-depth analysis 
after discrimination is first possible21,23. At the subordinate level, the 
body-specific peak (170 ms) and the two face-specific peaks (127 ms  
and 190 ms) concur with previous work (for bodies, 170–260 ms  
(refs. 31,38,39); for faces, first peak at 100–120 ms (ref. 35) and second 
peak at 170 ms (refs. 22,40)). It remains controversial whether the 
two face peaks have different cortical sources41–43, a question that 
future studies comparing representational dissimilarities in MEG and 
fMRI may resolve. While our MEG results confirm a body of work19, 
they generalize previous findings to a large image set and show when 
neural activity is transient or persistent during object analysis. This 
goes beyond what was previously possible with standard analysis 
techniques of the evoked response, allowing us to dissect the evoked 
response into functionally distinct neural components.

When comparing peak latencies of decoding accuracy at differ-
ent levels of categorization, we observed that individual images were 
discriminated by visual representations early, whereas ordinate and 
superordinate levels emerged relatively late. However, onset latencies of 
significance for the various categorization levels were early (48–70 ms,  
except naturalness at 93 ms). Therefore, our results support models 
of object categorization that suggest processing of object information 
to begin at all levels of categorization simultaneously, with differ-
ential time courses of evidence accumulation for different levels of 
categorization44,45. Our results might seem to be at odds with previ-
ous research suggesting clear multistage processing in IT, with a stage 
of global processing followed by local processing35,46,47. However, 
our approach captures signals from the whole of the human brain 
simultaneously, not only IT. Thus, although we can determine which 
region predominates in shaping the MEG response at a specific time, 

we cannot distinguish between early and late phases of a response of 
a particular region.

The method and results of this work provide a gateway to resolv-
ing the time course of visual processing to a variety of other visual 
stimuli. In effect, it may permit a denser sampling of object space 
than previously achieved4,5. For example, a description of the tem-
poral dynamics of face representation in humans might be feasible 
with a large and rich parametrically modulated stimulus set and 
comparison to monkey electrophysiology48. Similarly, most MEG or 
EEG studies based on event-related potential analysis investigating 
content-specific modulation of brain activity by cognitive factors like 
memory or attention must rely on a handful of categorical markers 
in the event-related potential waveform—for example, the M100 and 
N170 for faces. In contrast, by applying multivariate methods, poten-
tially any kind of content and the modulation of its representation by 
cognitive factors may be tractable, increasing experimental flexibility 
and generalizability of results. Thus, the application of multivariate 
analysis techniques to MEG19 might be as fruitful in the future study 
of object recognition as the introduction of these techniques was  
in fMRI18,20.

Resolving object processing in time, space and species
Relating signals measured in different imaging modalities and com-
bining the methods’ respective advantages are challenges in systems 
neuroscience25. Using representational similarity analysis, we showed 
a content-selective correspondence between early MEG signals and 
fMRI responses in V1 and between later MEG signals and fMRI 
responses in IT. Our results match previously reported average onset 
latencies in the literature, ranging between 50 and 80 ms in V1 (ref. 9)  
and 80 and 200 ms in IT11,37. Thus, representational similarity analy-
sis combining MEG and fMRI is a promising method for relating 
cortical activations across space and time.

Comparing visual representations across time, we differentiated 
transient from persistent neural activity during object processing and 
found evidence for persistent activity in both V1 and IT. Thus, during 
object viewing the brain maintained both low- and high-level feature 
representations. These effects are most likely actively controlled pro-
cesses, as indicated by their limited temporal extent. They might form 
the basis of memory of images in representational formats that make 
explicit different properties of these images—for example, low-level 
features versus category membership.

An integrated theory of object recognition requires quantitative 
bridging of the gap not only across imaging modalities but also across 
species. Using representational similarity analysis, it has been shown 
that human and monkey IT share a similar object coding scheme3. 
Here we have extended this finding by taking first steps in linking 
the dynamics in human MEG to single-cell activity in monkey IT.  
Note that in this experiment all temporal variance came from MEG: 
the dissimilarity matrix of monkey IT is based on averaged activity 
in IT cells 71–210 ms after stimulus onset26. Future studies might 
compare the dynamics in human and monkey IT using monkey data 
resolved in time, thus potentially complementing spatial homologies 
with temporal ones. In the meantime, the linkage between the time 
course of individual object coding in humans and coding of these 
same objects in monkey IT, although predictable by previous research, 
is shown here to our knowledge for the first time.

Conclusion
Progress in understanding how object recognition is implemented in 
the brain is likely to come from the combination of advances in data 
analyses suitable for different imaging techniques and comparison 
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across species25. Here we have provided key advances on two fronts. 
First, by applying multivariate pattern classification to human MEG 
signals, we showed the dynamics with which the brain processes 
objects at different levels of categorization and actively maintains 
visual representation. Second, we proposed an integrated space- and 
time-resolved view of the human brain during the first few hundred 
milliseconds of visual object processing and showed that represen-
tational similarity analysis allows brain signals in space, time and 
species to be understood in a common framework.

METHODS
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Participants and experimental design. Sixteen right-handed, healthy volun-
teers with normal or corrected-to-normal vision (10 female, age: mean ± s.d. =  
25.87 ± 5.38 years) participated in the experiment. The study was conducted 
according to the Declaration of Helsinki and approved by the local ethics com-
mittee (Institutional Review Board of the Massachusetts Institute of Technology). 
Fifteen participants completed two MRI and MEG sessions, and one participant 
participated in the MEG experiment only. The sample size is comparable to that 
used in previous fMRI and MEG studies. All participants provided written con-
sent for each of the sessions. During the experiment participants saw images 
of 92 different objects presented at the center of the screen (2.9° visual angle,  
500 ms duration) overlaid with a dark gray fixation cross. We chose this particular 
data set for two reasons. First, it allowed assessment of distinctions at three levels: 
superordinate, ordinate and subordinate categories. Second, it enabled direct 
comparison of our MEG and fMRI results with previous experiments using the 
same date set in monkey electrophysiology and human MRI3,26. The presenta-
tion parameters were adapted to the specific requirements of each acquisition 
technique (Supplementary Fig. 1). In detail, for each MEG session, participants 
completed 10 to 15 runs, each having duration 420 s. Each image was presented 
twice in each MEG run in random order, with a trial onset asynchrony (TOA) of 
1.5 or 2 s. Participants were instructed to press a button and blink their eyes in 
response to a paper clip that was shown randomly every 3 to 5 trials (average 4). 
For each fMRI session, participants completed 10 to 14 runs, each having dura-
tion 384 s. Each image was presented once in each run in random order, with the 
restriction of not displaying the same condition on consecutive trials. Thirty null 
trials with no stimulus presentation were randomly interspersed, during which 
the fixation cross turned darker for 100 ms and participants reported the change 
with a button press. TOA was 3 s, or 6 s in the presence of a null trial.

Human Meg acquisition. We acquired continuous MEG signals from 306 chan-
nels (204 planar gradiometers, 102 magnetometers, Elekta Neuromag TRIUX, 
Elekta, Stockholm) at a sampling rate of 1,000 Hz, filtered between 0.03 and 
330 Hz. Raw data were preprocessed using spatiotemporal filters (maxfilter 
software, Elekta, Stockholm) and then analyzed using Brainstorm49. MEG trials 
were extracted with 100 ms baseline and 1,200 ms post-stimulus (i.e., 1,301 ms 
length), the baseline mean of each channel was removed, and data were tempo-
rally smoothed with a 20-ms sliding window. A total of 20–30 trials were obtained 
for each condition, session and participant.

Multivariate analysis of Meg data. To determine the amount of object image 
information contained in MEG signals, we employed multivariate analysis in the 
form of linear support vector machines (SVMs; libsvm: http://www.csie.ntu.edu.
tw/~cjlin/libsvm/)50. The SVM analysis was conducted independently for each 
participant and session (Fig. 1a,b). For each time point (100 ms before to 1,200 ms  
after image onset), MEG data were arranged in the form of 306 dimensional 
measurement vectors, yielding N pattern vectors per time point and condition 
(image). We used supervised learning, with a leave-one-out cross-validation 
approach, to train the SVM classifier to pairwise decode any two conditions. 
Namely, for each time point and pair of conditions, N − 1 pattern vectors com-
prised the training set and the remaining Nth pattern vectors the testing set, and 
the performance of the classifier to separate the two conditions was evaluated. 
The process was repeated 100 times with random reassignment of the data to 
training and testing sets, yielding an overall decoding accuracy of the classifier. 
The decoding accuracy was then assigned to a decoding accuracy matrix of size 
92 × 92, with rows and columns indexed by the conditions classified. The matrix 
is symmetric across the diagonal, with the diagonal undefined. This procedure 
yielded one 92 × 92 matrix of decoding accuracies for every time point.

Visualization and exploration using multidimensional scaling. The 92 × 92 
MEG decoding matrices contained complex high-dimensional structure that was 
difficult to visualize. To reveal any underlying patterns, we used multidimensional 
scaling (MDS)29,30 to plot the data into a two-dimensional space of the first two 
dimensions of the solution, such that similar conditions were grouped together 
and dissimilar conditions far apart. MDS is an unsupervised method to visualize 
the level of similarity of individual objects contained in a distance matrix (here 
the decoding matrix), whereby objects are automatically assigned coordinates in 
space so that distances between objects are preserved.

MDS was applied to the whole or part of the decoding matrix, depending 
on the conditions explored. To avoid double-dipping51 the data, we computed 
MDS at peak-latency time points with a leave-one-participant-out approach as 
follows: all but one participant were used to identify the peak latency time and 
the remaining participant provided the decoding matrix. The decoding matrix 
was averaged across all permutations, and only the overall decoding matrix was 
subjected to MDS.

Human fMRI acquisition. Magnetic resonance imaging (MRI) was conducted on 
a 3T Trio scanner (Siemens, Erlangen, Germany) with a 32-channel head coil. We 
acquired structural images using a standard T1-weighted sequence (192 sagittal 
slices, FOV = 256 mm2, TR = 1,900 ms, TE = 2.52 ms, flip angle = 9°). For fMRI, 
we conducted 10–14 runs in which 192 volumes were acquired for each partici-
pant (gradient-echo EPI sequence: TR = 2,000 ms, TE = 31 ms, flip angle = 80°,  
FOV read = 192 mm, FOV phase = 100%, ascending acquisition, gap = 10%, 
resolution = 2 mm isotropic, slices = 25). The acquisition volume covered the 
occipital and temporal lobe and was oriented parallel to the temporal cortex.

Human fMRI analysis. fMRI data were processed using SPM8 (http://www.
fil.ion.ucl.ac.uk/spm/). For each participant and session separately, data were 
realigned and slice-time corrected, and then co-registered to the T1 structural 
scan acquired in the first MRI session. We neither normalized nor smoothed 
fMRI data. We then modeled the fMRI responses to the 92 images with a general 
linear model (GLM) in two independent models: one comprising only the first 
three runs of each session and one comprising the remaining runs. The onsets 
and durations of each image presentation, as well as those of the null trials, were 
entered into the GLM as regressors and convolved with a hemodynamic response 
function. Movement parameters entered the GLM as nuisance regressors. For 
each of the 92 image conditions, we converted GLM parameter estimates into 
t-values by contrasting each condition estimate against the explicitly modeled 
baseline. In addition, we assessed the effect of visual stimulation irrespective of 
condition in a separate t-contrast by contrasting the parameter estimates for all 
92 images against baseline.

fMRI region of interest definition. We defined V1 separately for each participant 
on the basis of an anatomical eccentricity template52. The cortical surface of each 
participant was reconstructed with FreeSurfer on the basis of the T1 structural 
scan53. The right hemisphere was mirror-reversed and registered to the left hemi-
sphere. This allowed us to register a V1 eccentricity template52 to participant- 
specific surfaces and to define surface-based regions of interest (ROIs) corres-
ponding to 0–3° and 3–6° visual angle, termed here central V1 and peripheral 
V1. These surface-based ROIs were resampled to the space of EPI volumes and 
combined in a common ROI for both cortical hemispheres.

For human IT, we used a mask consisting of bilateral fusiform and inferior 
temporal cortex (WFU Pickatlas, IBASPM116 Atlas54). Anatomical masks were 
reverse-normalized from MNI-space to single-participant space. To match the 
size of IT to the average size of central V1, we restricted the definition of IT for 
each participant and session: we considered only the 361 most strongly activated 
voxels in the t-contrast of all conditions against baseline in the GLM based only 
on the first three runs; we used only these voxels to extract t-values for each of 
the 92 images from the remaining runs for further analysis.

fMRI pattern analysis. We used a correlation-based method to determine the 
relations between brain fMRI responses to the 92 images (Fig. 4). Observations 
were formed from each ROI (central and peripheral V1, and IT), by extracting 
and concatenating the corresponding voxel fMRI activation values into pattern 
vectors. For every pair of the 92 conditions, we then computed the Spearman’s 
rank-order correlation coefficient R between the corresponding pattern vectors 
of a given ROI and stored the result in a 92 × 92 symmetric matrix. We converted 
the correlations into a dissimilarity measure3 1 − R, which is bounded between 0 
(no dissimilarity) and 2 (complete dissimilarity). For further analyses, we aver-
aged the dissimilarity matrices across sessions and participants, resulting in one 
matrix for each ROI.

Monkey electrophysiology. The details of monkey electrophysiological record-
ings and representational similarity analysis are described elsewhere26. In short, 
two awake macaque monkeys were presented with the same stimulus set as the 

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.fil.ion.ucl.ac.uk/spm/
http://www.fil.ion.ucl.ac.uk/spm/


©
20

14
 N

at
u

re
 A

m
er

ic
a,

 In
c.

  A
ll 

ri
g

h
ts

 r
es

er
ve

d
.

nature neurOSCIenCe doi:10.1038/nn.3635

one used in our MEG and fMRI human experiments. Images spanned 7° visual 
angle and were presented in a rapid design (105 ms on, ISI = 0s) among a larger 
set of images while the monkeys maintained fixation. Single-cell responses in 674 
neurons were recorded extracellularly from anterior inferior temporal cortex. 
Cell responses to each image were estimated as average spike rate in a 71–210 ms  
time window after stimulus onset. Representational dissimilarity matrices were 
created by pairwise-correlating responses to images across the 674 neurons 
(Pearson’s product-moment correlation) and subtracting the resulting value from 
1. The representational dissimilarity matrices were generously supplied to us by 
N. Kriegeskorte and R. Kiani3,26.

Significance testing. We used non-parametric statistical inference27,28, which 
does not make assumptions about the distribution of the data, for random-effects 
inference. Permutation tests were used for cluster-size inference, and bootstrap 
tests for confidence intervals on (1) maxima and cluster onsets/offsets and (2) 
peak-to-peak latency differences. The sample size (N) was always 16, and all 
tests were two-sided.

Permutation tests. The null hypothesis of no experimental effect differed 
throughout the paper depending on the analysis of interest: the MEG decod-
ing time series was equal to 50% chance level; the within-subdivision minus 
between-subdivision portions of an MEG decoding matrix was equal to 0; the 
correlation of the MEG decoding matrices and fMRI (or monkey spiking activity) 
dissimilarity matrix was equal to 0. In all cases, under the null hypothesis we could 
permute the condition labels of the MEG data, which effectively corresponds to 
a sign permutation test that randomly multiplies the participant-specific data 
(for example, MEG decoding accuracies or correlations) with +1 or −1. For each 
MEG permutation sample, we recomputed the statistic of interest. Repeating this 
procedure 50,000 times, we obtained an empirical distribution of the data, which 
allowed us to convert our statistics (for example, MEG decoding time series, 
time-time decoding matrices, etc.) into one-dimensional or two-dimensional 
P-value maps.

Familywise error rate was then controlled with cluster-size inference. The 
P-value maps of the original data were thresholded at P < 0.001 for one dimen-
sion and P < 0.0001 for two dimensions to define suprathreshold clusters. These 
suprathreshold clusters were reported significant only if their size exceeded a 

threshold, estimated as follows: the previously computed permutation samples 
were also converted to P-value maps (relying on the same empirical distribution 
as the original data) and also thresholded to define resampled versions of supra-
threshold clusters. These clusters were used to construct an empirical distribution 
of maximum cluster size and to estimate a threshold at 5% of the right tail of this 
distribution (that is, the corrected P value is P < 0.05).

Bootstrap tests. We calculated 95% confidence intervals for the onsets of the 
first significant cluster and the peak latency of the observed effects. To achieve 
this, we created 1,000 bootstrapped samples by sampling the participants with 
replacement. For each bootstrap sample, we repeated the exact data analysis 
as the original data (including the permutation tests), resulting in bootstrap 
estimates of onsets and peak latencies and thus the determination of their 95%  
confidence intervals.

To calculate confidence intervals on mean peak-to-peak latency differences, 
we created 50,000 bootstrapped samples by sampling the participant-specific 
latencies with replacement. This yielded an empirical distribution of mean peak-
to-peak latencies. We set P < 0.05, Bonferroni-corrected. If the 95% confidence 
interval did not include 0, we rejected the null hypothesis of no peak-to-peak 
latency differences.
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