Springe direkt zu Inhalt



Schwarze SA, Bonati S, Cichy RM, Linderberger U, Bunge SA, Fandakova Y (2023) Task-Switch Related Reductions in Neural Distinctiveness in Children and Adults: Commonalities and Differences. bioRxiv; doi: 10.1101/2023.12.22.572358. <bioRxiv> 

Doostani N, Hossein-Zadeh GA, Cichy RM, Vaziri-Pashkam M (2023) Attention Modulates Human Visual Responses to Objects by Tuning Sharpening. bioRxiv; doi: 10.1101/2023.06.01.543205. <bioRxiv>

Haeberle G, Celikkol AP, Cichy RM (2023) The influence of the bullseye versus standard fixation cross on eye movements and classifying natural images from EEG. bioRxiv; doi: 10.1101/2023.03.21.532944. <bioRxiv>

Foxwell MJ*, Wang G*, Cichy RM, Pitcher D, Kaiser D (2023) Individual differences in internal models explain idiosyncrasies in scene perception. PsyArXiv; 10.31234/osf.io/98wt7. <PsyArXiv>

Lahner B, Dwivedi K, Iamshchinina P, Graumann M, Lascelles A, Roig G, Gifford AT, Pan B, Jin S, Murtz NAR, Kay K, Oliva A*, Cichy RM* (2023) BOLD Moments: modeling short visual events through a video fMRI dataset and metadata. bioRxiv; doi: 10.1101/2023.03.12.530887. <bioRxiv>

Gifford AT, Labner B, Saba-Sadiqa S, Vilas MG, Lascelles A, Oliva A, Kay K, Roig G, Cichy RM (2023) The Algonauts Project 2023 Challenge: How the Human Brain Makes Sense of Natural Scenes. arXiv; doi: 10.48550/arXiv.2301.03198. <arXiv>

Bersch D, Dwivedi K, Vilas M, Cichy RM, Roig G (2022) Net2Brain: A Toolbox to compare artificial vision models with human brain responses. arXiv; doi: 10.48550/arXiv.2208.09677. <arXiv> <code&examples>

Iamshchinina P, Haenelt D, Trampel R, Weiskopf N, Kaiser D*, Cichy RM* (2022) Benchmarking GE-BOLD, SE-BOLD, and SS-SI-VASO sequences for depth-dependent separation of feedforward and feedback signals in high-field MRI. bioRxiv; doi:10.1101/2021.12.10.472064. <bioRxiv>

Cichy RM, Dwivedi K, Lahner B, Lascelles A, Iamshchinina P, Graumann M, Andonian A, Murty NAR, Kay K, Roig G, Oliva A (2021) The Algonauts Project 2021 Challenge: How the Human Brain Makes Sense of a World in Motion. arXiv; doi: arXiv:2104.13714. <arXiv>


accepted & in press





Chen L, Cichy RM*, Kaiser D* (2023) Alpha-frequency feedback to early visual cortex orchestrates coherent natural vision. bioRxiv; 10.1101/2023.02.10.527986. <bioRxiv> <article>

Karapetian A, Boyanova A, Pandaram N, Obermayer K, Kietzmann TC*, Cichy RM* (2023) Empirically identifying and computationally modelling the brain-behavior relationship for human scene categorization. J Cog Neuro; doi: 10.1101/2023.01.22.525084. <bioRxiv>  <article>

Graumann M, Wallenwein LA, Cichy RM (2023) Independent spatiotemporal effects of spatial attention and background clutter on human object location representations. Neuroimage 15;272:120053. doi: 10.1016/j.neuroimage.2023.120053. <bioRxiv> <article>

Jozwik KM, Kietzmann TC, Cichy RM, Kriegeskorte N, Mur M (2023) Deep neural networks and visuo-semantic models explain complementary components of human ventral-stream representational dynamics. J Neurosci 43(10):1731-1741; doi: 10.1523/JNEUROSCI.1424-22.2022. <bioRxiv> <article>

Singer JD, Cichy RM, Hebart MN (2023) The spatiotemporal neural dynamics of object recognition for natural images and line drawings. JNeurosci 43(3):488-500; doi: 10.1523/JNEUROSCI.1546-22.2022. <bioRxiv> <article>


Xie S, Hoehl S, Moeskops M, Kayhan E, Klliesch C, Turtleton B, Köster M*, Cichy RM* (2022) Visual category representations in the infant brain. Curr Biol 32(24):5422-5432.e6; doi: 10.1016/j.cub.2022.11.016. <bioRxiv> <article>

Gifford AT, Dwivedi K, Roig G, Cichy RM (2022) A large and rich dataset for modelling human visual object recognition. Neuroimage 264:119754; doi: 10.1016/j.neuroimage.2022.119754. <bioRxiv> <article> <data>

Jozwik KM, Najarro E, van dern Bosch JJF, Charest I, Cichy RM*, Kriegeskorte N*(2021) Disentangling five dimensions of animacy in human brain and behaviour. Commun Biol 5(1):1247; doi: 10.1038/s42003-022-04194-y. <bioRxiv> <article>

Ebrahiminia F, Cichy RM*, Khaligh-Razavi SM* (2022) A multivariate comparison of electroencephalogram and functional magnetic resonance imaging to electrocorticogram using visual object representations in humans. Front Neurosci 2022 16:983602; doi: 10.3389/fnins.2022.983602. <bioRxiv> <article>

Iamshchinina P, Karapetian A, Kaiser D*, Cichy RM* (2022) Resolving the time course of visual and auditory object categorization. J Neurophysiol 127(6): 1622-1628; doi: 10.1152/jn.00515.2021. <bioRxiv> <article>

Ashton K, Zinszer BD, Cichy RM, Nelson III CA, Aslin RN, Bayet L (2022) Time resolved multivariate pattern analysis of infant EEG data: a practical tutorial. Devel Cogn Neurosci 54:101094; doi: 10.1016/j.dcn.2022.101094. <bioRxiv> <article>

Graumann M, Ciuffi C, Dwivedi K, Roig G, Cichy RM (2022) The spatiotemporal neural dynamics of object location representations in the human brain. Nat Human Behav 6: 796–811; doi 10.1038/s41562-022-01302-0. <article>

Kaiser D, Jacobs AM, Cichy RM (2022) Modelling brain representations of abstract concepts. PlosCompBiol 18(2):e1009837; doi: 10.1371/journal.pcbi.1009837. <bioRxiv> <article>

Chen L, Cichy RM*, Kaiser D* (2022) Semantic scene-object consistency modulates N300/400 EEG components, but does not automatically facilitate object representations. Cereb Cortex 32(16):3553-3567; doi: 10.1093/cercor/bhab433. <bioRxiv> <article>

Kaiser D, Cichy RM (2021) Parts and wholes in scene processing. J Cogn Neurosci; 34(1):4-15; doi: 10.1162/jocn_a_01788. <PsyArXiv> <article>

Vidaurre D, Cichy RM*, Woolrich MW* (2021) Dissociable components of oscillatory activity underly information encoding in human perception. Cereb Cortex 31(12): 5664-5675; doi: 10.1093/cercor/bhab189. <bioRxiv> <article>

Iamshchinina P, Kaiser D, Yakupov R, Haenelt D, Sciarra A, Mattern H, Luesebrink F, Duezel E, Speck O, Weiskopf N, Cichy RM (2021) Perceived and mentally rotated contents are differentially represented in cortical depth of V1. Commun Biol, 4(1):1069; doi: 10.1038/s42003-021-02582-4. <article> <bioRxiv> <data>

Dwivedi K, Bonner MF, Cichy RM*, Roig G* (2020)Unveiling functions of the visual cortex using task-specific deep neural networks. PLoS Comput Biol 17(8):e1009267; doi: 10.1371/journal.pcbi.1009267. <article> <bioRxiv> <project page>

Kaiser D, Haeberle G, Cichy RM (2020) Coherent natural scene structure facilitates the extraction of task-relevant object information in visual cortex. Neuroimage 240: 118365; doi: 10.1016/j.neuroimage.2021.118365. <article> <bioRxiv> <data>

Nara S, Lizarazu M, Richter CG, Dima DC, Cichy RM, Bourguignon M, Molinaro N (2021) Temporal uncertainty enhances suppression of neural responses to predictable visual stimuli. Neuroimage 239: 118314. doi: 10.1016/j.neuroimage.2021.118314.  <article> <bioRxiv>

Reddy L, Cichy RM, VanRullen R (2021) Representational content of oscillatory brain activity during object recognition: contrasting cortical and deep neural network hierarchies. eNeuro, doi: 10.1523/ENEURO.0362-20.2021. <article> <bioRxiv>


Bayet L, Zinszer D, Reilly E, Cataldo JK, Pruitt Z, Cichy RM, Nelson III CA, Aslin RN (2020) Temporal dynamics of visual representations in the infant brain. Devel Cogn Neurosci 45:100860; doi: 10.1016/j.dcn.2020.100860. <article> <bioRxiv>

Kaiser D, Inciuraite G, Cichy RM (2020) Rapid contextualization of fragmented scene information in the human visual system.  Neuroimage 219:117045 ; doi: 10.1016/j.neuroimage.2020.117045.   <article> <bioRxiv> <data>

Cichy RM, Oliva A (2020) A M/EEG-fMRI Fusion Primer: Resolving Human Brain Responses in Space and Time. Neuron 1-7(5): 772-281; doi: 10.1016/j.neuron.2020.07.001. <article>

Xie S, Kaiser D, Cichy RM (2020) Visual Imagery and perception share neural representations in the alpha frequency band. Curr Biol 30(13):2621-2627. doi: 10.1016/j.cub.2020.04.074. <article> <data>

Dwivedi K, Cichy RM*, Roig G* (2020) Unravelling Representations in Scene-selective Brain Regions Using Scene Parsing Deep Neural Networks. J Cog Neuro 8: 1-20; doi: 10.1101/2020.03.10.985309. <bioRxiv> <article>

Dwivedi K, Juang J, Cichy RM*, Roig G* (2020). Duality Diagram Similarity: a generic framework for initialization selection in task transfer learning. . In: Vedaldi A., Bischof H., Brox T., Frahm JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science, vol 12371. Springer, Cham. doi: 10.1007/978-3-030-58574-7_30.  <arXiv>

Kaiser D, Haberle G, Cichy RM (2020) Real-world structure facilitates the rapid emergence of scene category information in visual brain signals.  J Neurophysiol 124(1):145-151; doi: 10.1152/jn.00164.2020. <article> <bioRxiv> <data>

Kaiser D, Häberle G, Cichy RM (2020) Cortical Sensitivity to Natural Scene Structure. Hum Brain Map 41: 1286-1295; doi: 10.1002/hbm.24875. <article> <bioRxiv> <data>


Cichy RM, Roig G, Oliva A (2019) The Algonauts Project. Nat Machin Intel 1: 630.

Kietzmann T, Courtney JS, Sörensen L, Cichy RM, Hauk O, Kriegeskorte N (2019). Recurrence required to capture the dynamic computations of the human ventral visual stream. PNAS 116(43): 21854-21863; doi: 10.1073/pnas.1905544116. <article> <arXiv>

Kaiser D, Turini J, Cichy RM (2019). A neural mechanism for contextualizing fragmented inputs during naturalistic vision. eLife 2019; 8: e48182, doi: 10.7554/eLife.48182. <article> <arXiv> <data>

Kaiser D, Quek GL, Cichy RM, Peelen MV (2019) Object vision in a structured world. Trends Cogn Sci 23(8): 672-685. <pdf>

Cichy RM, Kriegeskorte N, Jozwik K, van den Bosch JJF, Charest I (2019) The spatiotemporal neural dynamics underlying perceived similarity for real-world objects. Neuroimage 194: 12-24. <bioRxiv> <pdf>

Cichy RM, Kaiser D (2019) Deep neural networks as scientific models. TrendsCognSci 23(4): 305-317; doi: 10.1016/j.tics.2019.01.009. <article>

Ambrus GG*, Kaiser D*, Cichy RM, Kovács G (2019) The neural dynamics of familiar face recognition. CerebCortex bhz010; doi: 10.1093/cercor/bhz010. <bioRxiv> <article>

Mohsenzadeh Y, Mullin C, Lahner B, Cichy RM, Oliva A (2019) Reliability and Generalizability of Similarity-Based Fusion of MEG and fMRI Data in Human Ventral and Dorsal Visual Streams. Vision 3(1), 8; doi: 10.3390/vision3010008. <bioRxiv> <article>

Mohr H, Cichy RM, Ruge H (2019) Deep neural networks can predict human behavior in arcade games. CCN, doi: 10.32470/CCN.2019.1043-0. <article>

Cichy RM, Roig G, Andonian A, Dwivedi K, Lahner B, Lascelles A, Mohsenzadeh Y, Ramakrishnan K, Oliva A (2019) The Algonauts Project: A Platform for Communication between the Sciences of Biological and Artificial Intelligence. CCN, doi: 10.32470/CCN.2019.1018-0. <article> <arXiv>


Kaiser D, Cichy RM (2018) Typical visual-field locations facilitate access to awareness for everyday objects. Cognition 180: 118-122; doi: 10.1016/j.cognition.2018.07.009. <data>

Khaligh-Razavi SM, Cichy RM, Pantazis D, Oliva A (2018) Tracking the spatiotemporal neural dynamics of real-world object size and animacy in the human brain. JCognNeurosci 30(11):1559-1576, doi: 10.1162/jocn_a_01290. <article>

Grootswagers T, Cichy RM, Carlson T (2018) Finding decodable information that is read out in behaviour. Neuroimage 179: 252-262; doi: 10.1016/j.neuroimage.2018.06.022. <article> <bioRxiv>

Chen Y, Cichy RM, Stannat W, Haynes JD (2018) Scale-specific analysis of fMRI data on the irregular cortical surface. Neuroimage 181: 370-381. <article> <bioRxiv>

Pantazis D, Fang M, Qin S, Mohsenzadeh Y, Li Q, Cichy RM (2018) Decoding the orientation of contrast edges from MEG evoked and induced responses. Neuroimage 180:267-279; doi: 10.1016/j.neuroimage.2017.07.022. <article> <bioRxiv>

Hebart MN, Bankson BB, Harel A, Baker CI*, Cichy RM* (2018) Representational dynamics of task context and its influence on visual object processing. eLife 2018; 7:e32816, doi: 10.7554/eLife.32816. <article> <bioRxiv>

Kaiser D, Cichy RM (2018) Typical visual-field locations enhance processing in object-selective channels of human occipital cortex. JNeurophys; doi: 10.1152/jn.00229.2018. <article> <data>

Kaiser D, Moeskops MM, Cichy RM (2018) Typical retinotopic locations impact the time course of object coding. Neuroimage 176: 372:379; doi: 10.1016/j.neuroimage.2018.05.0066. <article> <bioRxiv> <data>

Guggenmos M, Sterzer P, Cichy RM (2018) Multivariate pattern analysis for MEG: a comprehensive comparison of dissimilarity measures.  Neuroimage 173:434-447; doi: 10.1016/j.neuroimage.2018.02.044. <article> <bioRxiv> <matlab & python tutorial>

Mohsenzadeh Y, Qin S, Cichy RM, Pantazis D (2018) Ultra-Rapid serial visual presentation reveals dynamics of feedforward and feedback processes in the ventral visual pathway. eLife 2018;7:e36329; doi: 10.7554/eLife.36329. <article> <bioRxiv>

Grootswager T, Cichy RM , Carlson T (2018) Finding decodable information that is read out in behaviour.  Neuroimage 179: 252-262; doi: 10.1016/j.neuroimage.2018.06.022.  <article> <bioRxiv>


Cichy RM, Pantazis D (2017) Multivariate pattern analysis of MEG and EEG: a comparison of representational structure in time and space. Neuroimage 158:441-454. <article> <bioRxiv <data>

Cichy RM, Khosla A, Pantazis D, & Oliva A (2017) Dynamics of scene representations in the human brain revealed by magnetoencephalography and deep neural networks. Neuroimage 153:346-358, doi:10.1016/j.neuroimage.2016.03.063. <article> <project page> <bioRxiv>

Cichy RM, Teng S (2017) Resolving the neural dynamics of visual and auditory scene processing in the human brain: a methodological approach. PhilTransRSocB 372:1714. doi: 10.1098/rstb.2016.0108. <pdf>


Cichy, RM, Pantazis D & Oliva A (2016) Similarity-based fusion of MEG and fMRI reveals spatio-temporal information flow in visual object recognition. CerebCortex 26(8):3563-79. doi: 10.1093/cercor/bhw135. <article> <bioRxiv>  <project page>

Cichy RM, Khosla A, Pantazis D, Torralba A & Oliva A (2016) Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object recognition reveals hierarchical correspondence. SciReports 6:27755; doi: 10.1038/srep27755. <article> <project page> <arXiv>

Cichy RM, Ramirez MF, Pantazis D (2016) Can visual information encoded in cortical columns be decoded from magnetoencephalography data in humans? Neuroimage 121: 193-204; doi:10.1016/j.neuroimage.2015.07.011. <pdf> <arXiv> <tics-spotlight>


Guggenmos M, Thoma V, Haynes JD, Richardson-Klavehn A, Cichy RM*, Sterzer P* (2015) Spatial attention enhances object coding in local and distributed representations of lateral occipital complex. Neuroimage 116:149-157; doi:10.1016/j.neuroimage.2015.04.004. <pdf>

Guggenmos M, Thoma V, Cichy RM, Haynes, JD, Sterzer P, Richardson-Klavehn R (2015) Non-holistic coding of objects in lateral occipital complex with and without attention. Neuroimage 107:356-363; doi: 10.1016/j.neuroimage.2014.12.013.

Christophel TB, Cichy RM, Hebart MN, Haynes JD (2015) Early visual and parietal cortex encodes working memory across mental transformations. Neuroimage, doi: 10.1016/j.neuroimage.2014.11.018.


Ramirez F, Cichy RM, Allefeld C, Haynes JD (2014) The neural code for face orientation in the human fusiform face area. J Neurosci, 34(36): 12155-12167; doi: 10.1523/JNEUROSCI.3156-13.2014. <pdf>

Cichy RM, Pantazis D, Oliva A (2014) Resolving human object recognition in space and time. Nat Neurosci 17(3): 455-462; doi: 10.1038/NN.3635. <pdf> <news&views> <news>

before 2014

Cichy RM, Sterzer P, Heinzle J, Haynes JD (2013) Uncovering principles of large-scale object representation: category preference and location encoding. Hum Brain Mapp 34(7):1636-1651. <pdf>

Cichy RM, Heinzle J, Haynes JD (2012) Imagery and perception share cortical representations of content and location. Cereb Cortex 22(2): 372-380. <pdf>

Cichy RM, Chen Y, Haynes, JD (2011).Encoding the identity and location of objects in human LOC. Neuroimage 54(3): 2297-307. <pdf>

Schmidt S, Cichy RM, Kraft A, Brocke J, Irlbacher K, Brandt SA (2009) An initial transient-state and reliable measure of corticospinal excitability in TMS studies. Clin Neurophysiol; 120(5): 987-93. <pdf>

Brocke J, Schmidt S, Irlbacher K, Cichy RM, Brandt SA (2008) Transcranial cortex stimulation and fMRI: electrophysiological correlates of dual-pulse BOLD signal modulation. Neuroimage 40(2): 631-43. <pdf>


Cichy RM (2015) Review of ‚Handbuch Kognitionswissenschaft; Achim Stephan, Sven Walter (Eds.). Phen Cogn Sci; doi:10.1007/s11097-015-9431-1.

Heinzle, J, Anders, S, Bode, S, Bogler, C, Chen, Y, Cichy, RM, Hackmack, K, Kahnt, T, Kalberlah, C, Reverberi, C, Soon, SC, Tusche, A, Weygandt, M & Haynes, JD (2012) Multivariate decoding of fMRI data – towards a content-based cognitive neuroscience. Neuroforum, 1, 160-177.

Cichy RM (2007) Transkranielle Hirnstimulation – Kausalität zwischen Gehirn und Geist. Nervenheilkunde. Nervenheilkunde 26 (12): 1148-1151.

Cichy RM, Fischer L, Rettenbacher S, Tsouni G (2007) Klosterwelten- Welt und Kloster. Projekt Junges Europa, Hannover: Wehrhahn Verlag.

Cichy RM (2005) The Dennettian Concept of Intentionality: Past and Present. Publications of the Institute of Cognitive Science. Volume 8-2005, Osnabrück.

* shared authorship